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Abstract

This dissertation examines the impact of long-range interactions in lat-
tice models of low-dimensional strongly correlated systems with a fo-
cus on their relevance to anomalous electronic transport. Traditionally,
the Hubbard model forms the basis of theoretical and numerical inves-
tigations of strongly correlated quantum matter. This effective model
constitutes the simplest model of electronic correlation and relies on an
approximation that truncates electron-electron interactions to a local,
on-site potential. While this approximation has proved valid in sev-
eral instances, certain unexplained phenomena in correlated materials
challenge us to develop new perspectives and approaches.

In the first part of this thesis, we discuss the historical motivation for
our current work from both a theoretical and an experimental view-
point. In particular, we cover the discovery of bad metallic transport
and the associated breakdown of Boltzmann theory of electron trans-
port. We further review examples of strongly correlated systems that
exhibit bad metallic transport and other exotic phenomena that sug-
gest the possibility of poorly screened electronic interactions acting as
a common microscopic mechanism. This general feature justifies the
development of a theoretical framework that is capable of examining
long-range interactions in a controlled, systematic manner.

Motivated by this, we analyze a long-range interacting lattice model
for spinless electrons in two dimensions via exact diagonalization on
a finite cluster in real space. As this method is susceptible to finite-
size errors, we discuss at length its implementation and technical de-
tails designed specifically to reduce these errors, namely the use of
twisted boundary conditions and the Ewald summation. We deter-
mine the phase diagram at zero temperature and demonstrate that the
long-range interactions act as a source of self-generated disorder that
drives the development of a strongly correlated pseudogap phase, in
a manner reminiscent of the classical Efros-Shklovskii Coulomb gap.
Furthermore, we establish that this phenomenon is independent of lat-
tice geometry, a fact that represents the broad potential of long-range
interactions in giving rise to a novel form of strongly correlated behav-
ior.
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Following our zero-temperature study, we address the question of
whether this self-generated disorder can survive in the presence of
thermal fluctuations and local Coulomb repulsion (Hubbard terms)
relevant in Mott systems, a situation closer to those in experimental
systems. By means of classical Monte Carlo calculations, we show
that not only does the self-generated disorder survive, but that it also
acts as a microscopic mechanism that generates bad metallic transport.
Upon further investigation, we determine that the long-range inter-
actions, in combination with quantum fluctuations, cause a transient
localization of the charge carriers, thereby suppressing the conductiv-
ity values below those predicted in conventional Boltzmann theory, as
observed experimentally.

In conclusion, we have established that long-range interactions in
electronic models act as a microscopic mechanism that is capable of
causing exotic phenomena in numerous materials. We conclude that
a proper treatment of both quantum fluctuations and long-range in-
teractions should next be studied with the finite temperature Lanczos
method, which will act as a bridge between our exact diagonalization
and Monte Carlo studies. Overall, this dissertation emphasizes the ca-
pability of long-range interactions to produce novel phenomena and
elicits further thought-provoking questions concerning the interplay
with Mott-Hubbard physics and external disorder, crucial in metallic
systems.



Résumé

Cette thèse examine l’impact des interactions à longue portée dans les
modèles sur réseaux des systèmes fortement corrélés de basse dimen-
sion, en mettant l’accent sur leur pertinence pour le transport électron-
ique anormal. Traditionnellement, le modèle de Hubbard constitue
le modèle de base des études théoriques et numériques dans le do-
maine de la matière quantique fortement corrélée. Ce modèle effectif,
le plus simple modèle électronique prenant en compte les interactions,
repose sur l’approximation que les interactions sont écrantées et que
seul un potentiel local, sur site, reste effectif. Cependant, bien que cette
approximation se soit avérée valide dans de nombreux cas, certains
phénomènes inexpliqués dans les matériaux corrélés nous mettent au
défi de développer de nouvelles perspectives et approches allant au-
delà des descriptions actuelles.

Dans la première partie, nous présentons l’état de l’art des systèmes
dits mauvais métaux d’un point de vue théorique et expérimental. En
particulier, nous présentons comment ces états électroniques ne sont
plus correctement décrits par la théorie de Boltzmann du transport des
électrons. Nous passons également en revue certains exemples de sys-
tèmes fortement corrélés présentant un mauvais transport métallique
ainsi que d’autres phénomènes exotiques, suggérant la possibilité que
des interactions électroniques soient faiblement écrantés et qu’elles
seraient ainsi à l’origine du mécanisme microscopique produisant le
comportement correlé. Cette caractéristique générale justifie alors le
développement d’un cadre théorique permettant d’examiner ces inter-
actions à longue portée d’une manière contrôlée et systématique.

Dans cette optique, nous analysons un modèle de réseau d’interaction
à longue portée pour des systèmes électroniques sans spin en deux
dimensions, par diagonalisation exacte. Cette méthode étant sensi-
ble aux effets de taille, nous développons des approches techniques
permettant d’en réduire les erreurs : conditions périodiques général-
isées et sommation d’Ewald. Nous déterminons ainsi le diagramme
de phases à température nulle et montrons comment les interactions
à longue portée agissent comme une source de désordre auto-généré
conduisant à l’apparition d’une phase pseudogap fortement corrélée,
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rappelant le gap de Coulomb classique de type Efros-Shklovskii. De
plus, nous établissons que ce phénomène est indépendant de la géométrie
du réseau montrant ainsi sont caractère générique et donc la possibilité
de l’observer dans d’autres contexts.

Fort de ce résultat, nous adressons alors la question de savoir si ce
désordre auto-généré peut survivre en présence de degrés de liberté
de spin et aux fluctuations thermiques, une situation plus proche de
l’expérience. Au moyen d’un Monte Carlo classique, nous montrons
que non seulement ce désordre survit, mais il est également à l’origine
microscopique d’un mauvais transport métallique. En rajoutant en-
fin le caractère quantique des électrons dans notre théorie, nous met-
tons en évidence que ces interactions à longues portées entraînent une
localisation transitoire des porteurs de charge, supprimant ainsi les
conductivités inférieure à celles prédites par la théorie Boltzmann, ré-
conciliant certaines observations faites dans la littérature.

En conclusion, nous avons établi que les interactions à longue portée
dans les modèles électroniques sont un mécanisme microscopique pou-
vant être à l’origine de phénomènes exotiques de nombreux matéri-
aux. Il reste cependant des questions ouvertes, comme un traitement
purement quantique à température finie. Ceci serait réalisable avec la
méthode de Lanczos à température finie, qui comblerait nos études
quantiques à température nulle et semi-classiques à température finie.
Nous savons cependant d’ores et déjà que les interactions à longues
portées sont à considérer si l’on veut s’intéresser aux questions du
rôle des spins et du désordre externe, cruciales dans les systèmes mé-
talliques.







Chapter 1:
Introduction





Chapter 1
Introduction

1

1.1 Historical perspectives

The birth of condensed matter is rooted in the development of the
Drude model, at a time when condensed matter research was still
referred to as solid state physics [1, 2]. This classical description of
electron transport in metals enjoyed much success as the first micro-
scopic model to describe experimentally observed trends of physical
observables, such as the Wiedemann-Franz law [3]. However, this sim-
ple model failed to describe other key phenomena, such as the specific
heat and low temperature behavior of the resistivity. As condensed
matter evolved with the incorporation of quantum mechanics, contri-
butions from Pauli and Sommerfeld were crucial to the improvement
of the Drude model, eventually leading to a correct description of the
specific heat [4–6]. Furthermore, Bloch’s description of electronic mo-
tion through a periodic lattice led to the development of band structure
calculations which contributed to a number of breakthrough discover-
ies in condensed matter systems in the mid-twentieth century [7, 8].

Figure 1.1: Illustration of band theory
prediction of an insulator versus a metal.

In particular, these early band structure calculations, which were
based on non-interacting electrons, and other mean field theory treat-
ments (such as Hartree-Fock) were successfully employed to charac-
terize metallic and insulating phases and to determine metal-insulator
transitions in terms of external parameters, such as temperature or
pressure. However, these techniques failed to accurately predict the
insulating nature of certain materials. The first instance of this failure
was pointed out by Verwey and de Boer for transition metal oxides in
1937 [9]. Subsequently Peierls and Mott called the community’s atten-
tion to the importance of electronic correlations arising from interac-
tions, thereby ushering in a new era in condensed matter physics–the
study of strongly correlated systems [10–14].

The two main research directions in this field can be summarized as:
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understanding the correlation-based mechanisms driving the metal-
insulator transitions in various strongly correlated systems (transition
metal oxides, layered organics, etc.); and characterizing the anomalous
metallic phases often found in the vicinity of the correlated insulators.
At first glance, investigating these phenomena in a systematic, con-
trolled manner across a variety of electronic systems may appear to be
a daunting, even unthinkable, challenge.

1.2 Theoretical studies of strongly correlated systems

A common theoretical approach to unraveling the mysteries of strongly
correlated systems has been to utilize effective fermionic lattice mod-
els, which reduce the numerous degrees of freedom to a minimal num-
ber that is relevant to the problem at hand [8]. The logic behind this
reduction scheme is that typically only a few degrees of freedom dom-
inate the physics, which can be justified upon a comparison of energy
scales. Perhaps the most famous example of an effective fermionic lat-
tice model is the Hubbard model. Described by the following Hamil-
tonian,

H = −t ∑
〈ij〉,σ

(
ĉ†

iσ ĉjσ + ĉ†
jσ ĉiσ

)
+ U ∑

i
n̂i↑n̂i↓ (1.1)

this model simplifies the many-electron problem to a study of only the
conduction band of electrons [15–17].

The first term in the Hamiltonian is typically referred to as the hop-
ping, or kinetic, term. In this term, 〈ij〉 indicates a summation over
nearest neighbor sites, i and j, with the particle spin indexed by σ.
The prevalence of nearest-neighbor hopping processes for a fixed spin
sector are controlled by the value of the hopping integral, t, which de-
scribes the overlap between atomic wavefunctions localized to sites i
and j in the tight binding approximation. The second term in Eq. 1.1
reflects the on-site (local) Coulomb potential experienced by two elec-
trons on the same lattice site. As the Coulomb interaction decays
rapidly with distance and most materials exhibit efficient screening
of charges, this on-site term is typically the only source of electron-
electron interaction treated in effective lattice models. In summary,
this model of conduction band electrons assumes that the electronic
motion happens via nearest-neighbor hops (first term) and that inter-
action effects are only considerable for doubly occupied sites (second
term).

Figure 1.2: Illustration of Hubbard
model terms on a square lattice.

Already at this minimal level (in terms of parameters), this model
is capable of producing correlated behavior, such as the famed Mott
metal-insulator transition [17,18] in half-filled systems, that previously
failed to be described by non-interacting band theory. Unfortunately,
even this relatively simple model only has an exact solution in one-
dimension via the use of the Bethe ansatz [19] and infinite dimen-
sions [20]. These limiting cases have been the focus of much research
over the past several decades and a wealth of results, including in-
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depth analyses of ground state and excited state properties at zero
and finite temperatures, has been accrued [21,22]. This knowledge has
been useful in the understanding of quasi-one-dimensional systems
which display strongly correlated physics, such as quantum wires,
Bechgaard organic salts, and Fabre organic salts [23, 24].

However, most strongly correlated systems in condensed matter
correspond to higher dimensions (d = 2, 3) which is exactly where
the deceptively simple Hubbard model fails to yield an exact solu-
tion. Throughout the past few decades, this limitation has spurred
a massive development of numerical methods and approximations to
extend the use of the Hubbard model (and its related variants). One
well-known example is the invention of dynamical mean field the-
ory (DMFT) which maps lattice models to quantum impurity mod-
els [20]. Another notable example is the extension of the density matrix
renormalization group (DMRG) method (arguably the best numerical
method for d = 1) to two-dimensional systems [25–28]. Other state-of-
the-art numerical methods include quantum Monte Carlo [29–31], ex-
act diagonalization [32, 33], diagrammatic Monte Carlo [34–36], tensor
network methods [37–39], and, more recently, machine learning tech-
niques [40–42]. Recent works have focused on collaborations of these
state-of-the-art numerical techniques to benchmark basic quantities re-
lated to the two-dimensional Hubbard model, such as the ground-state
energy and double occupation fraction (see Fig. 1.3).

Figure 1.3: Thermodynamic-limit
ground-state energy of the Hubbard
model at n = 1 with U/t = 8 as
obtained by various algorithms (open
symbols). Ground state estimates for
finite-size systems (closed symbols)
are also provided. Reproduced from
Ref. [43].

The growth in numerical methods used to study strongly corre-
lated systems also coincides with recent progress in experimental tech-
niques [44]. In particular, heterostructure systems give rise to emer-
gent moiré lattices with strong interaction effects, thereby providing
us with an experimental platform to perform carefully controlled stud-
ies into the interaction-driven physics [45, 46]. These systems include
heterostructures composed of transition metal dichalcogenides, which
will be discussed in more detail later. Additionally, advances in cold
atoms have produced systems capable of acting as Hamiltonian model
solvers [47].

Together, these theoretical and experimental advances have been
greatly successful in improving our understanding of strongly cor-
related materials. For example, we have acquired a qualitative un-
derstanding of the phase diagram and superconductivity observed
in the famous high-temperature cuprate superconductors [48]. Ob-
viously, a comprehensive review and analysis of the myriad theoret-
ical, numerical and experimental advances (and their shortcomings)
related to strongly correlated matter lies outside the scope of this the-
sis. We invite the interested reader to refer to Refs. [44, 49, 50] which
are graduate-level textbooks that provide a technical overview of re-
cent theoretical, numerical and experimental advances.

Despite the immense progress made, we are still far from a com-
plete understanding of strong electronic correlations and the exotic
phases to which they give rise. Moreover, explaining the anomalous
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transport observed in multiple strongly correlated systems remains
one of the main challenges in the field today. These systems include
the high-temperature cuprate superconductors [51], pnictides [52–54],
fullerenes [55], vanadium dioxide [56], ruthenates [57], layered organic
salts [58, 59], and nickelates [60]. Their transport is deemed bad or
anomalous because the experimental measurements of the electrical
resistivity have shown that it grows with temperature beyond a point
known as the Mott-Ioffe-Regel limit in these systems. This limit will
be discussed in more detail in the following section, but for now it
suffices to say that this behavior signals the breakdown of the conven-
tional Boltzmann theory of transport. The remarkable fact that such
vastly different systems (in terms of chemical composition, structure,
etc) display similar anomalous behavior suggests that the underlying
mechanism must be not only quite general, but could also be lacking
from the typical microscopic models used to study strongly correlated
systems. While conventional microscopic models are capable of giv-
ing rise to resistivity growth beyond the MIR limit, they are unable to
describe other signatures of anomalous transport which will be dis-
cussed in the following section. One proposed mechanism in partic-
ular constitutes the main focus of this thesis—the effect of long-range
(non-local) interactions in strongly correlated matter. As such, we will
concentrate the remainder of this discussion on selected developments
that we deem as relevant to understanding this mechanism.

Figure 1.4: Illustration of bad metal-
lic transport where the resistivity climbs
past the Mott-Ioffe-Regel limit.

1.3 Anomalous transport

The conventional understanding of electron transport in solids relies
on the use of Boltzmann theory, a semi-classical treatment that de-
scribes electron transport in terms of quasiparticle scattering processes
with other electrons, lattice vibrations or other sources of disorder (see
Fig. 1.5). Typically at low temperatures in Fermi liquids, the resis-
tivity scales with the temperature as T2 due to electron-electron scat-
tering and Umklapp processes. With increasing temperature, electron-
phonon scattering processes dominate, leading to a T5 scaling behavior
before reducing to a linear rate at high temperatures. The average dis-
tance that a charge carrier, or quasiparticle, travels between scattering
processes is called the mean free path and is denoted by `.

Figure 1.5: Illustration of an electron
scattering process with disorder (red).
The average distance traveled between
scattering events is labeled by ` (green).

As the temperature increases, this quantity decreases as the rate
of scattering events increases with increasing thermal fluctuations. In
conventional metals, such as copper, the mean free path is typically
much larger than the lattice spacing, a, all the way up to the melting
temperature, Tm. Therefore, Boltzmann theory accurately describes
the transport properties in these materials, such as the fact that the re-
sistivity typically scales linearly with temperatures beyond the energy
scale of lattice vibrations [61]. The fact that the mean free path should
be much larger than the lattice spacing (` � a) turns out to be a non-
trivial criterion in determining the relevance of the Boltzmann picture
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of transport.
Indeed, in 1960 Ioffe and Regel identified that Boltzmann transport

is no longer valid when the mean free path falls below a limiting, min-
imum value [62]. This limitation on the mean free path came to be
known as the Mott-Ioffe-Regel (MIR) limit as Mott similarly proposed
a minimal metallic conductivity in 1972 [63]. Although conflicting def-
initions exist in the literature, we work with the definition `min = a
throughout this manuscript. The physical interpretation of this limit is Alternative definitions include `min =

k−1
F , and `min = 2πk−1

F , where kF is the
Fermi wave vector [61].

that the semi-classical description of electron scattering processes only
works when the scattering events occur at least one lattice spacing
apart.

This limit was confirmed by the experimental observation of resis-
tivity saturation in a number of materials, even those who displayed
resistivity values higher than those predicted by Boltzmann theory. In
other words, as the temperature approached the value Tsat at which
` ≈ a, the growth of the resistivity would slow down and would dis-
play saturated behavior until the melting transition at Tm. Typically
this saturation is well-described by a parallel-resistor formula devel-
oped by Wiesmann in the late 1970s [64]. This formula states that the
resistivity can be described as

1
ρ(T)

=
1

ρideal(T)
+

1
ρsat

(1.2)

where ρideal(T) is the value predicted by Boltzmann theory if satu-
ration did not occur, and ρsat is the resistivity value predicted from
Boltzmann theory at `min = a. This simple formula performed so
well that resistivity saturation was commonly accepted as a universal
property of all metals [65].

However, one of the first instances of non-saturating behavior was
reported in two different cuprate systems in 1987 [51], suggesting that
phonons were not the dominant scattering force at high temperature
and that the MIR limit was violated according to parameters from
band structure calculations. This discovery, coupled with other find-
ings of non-saturating behavior in vastly different materials [57,66,67],
has motivated the search for a theoretical framework of transport that
extends beyond the typical semi-classical approach. The observed
anomalous behavior not only violates the MIR limit without any cross-
over indication, but also typically shows no sign of saturating at higher
temperatures in these so-called bad metals.

Figure 1.6: A note on terminology: bad
metallic resistivity violates the MIR limit
while strange metallic resistivity addi-
tionally exhibits linear behavior below
the MIR limit.

This term was first coined by Emery and Kivelson in 1995 in an early
attempt to describe the non-saturating metallic systems where the cal-
culated mean free path at high temperature implies that the quasipar-
ticle picture can no longer be valid [68]. Furthermore, they postulated
that the non-quasiparticle mechanism driving transport at high tem-
perature could also control the low temperature transport (T < TMIR)
because these systems do not display any crossover in temperature
dependence [68]. The existence of such an exotic phase (non-Fermi
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liquid) has spurred several theoretical attempts at an explanation, but
no widely accepted conclusion has been reached [69,70]. DMFT works
by Deng et al. [71] have analyzed the behavior of the spectral function
and determined that the quasiparticle picture is valid below the Fermi
temperature, TF. As this temperature can be much lower than TMIR,
they also examined the intermediate temperature regime and discov-
ered signatures of resilient quasiparticles which eventually disappear at
TMIR (Fig. 1.7). Overall, the extent to which quasiparticles contribute to
bad metallic transport remains a topic of much debate and there is no
generally accepted theoretical description of an exotic, quasiparticle-
free mechanism.

Figure 1.7: Illustration of the regime of
resilient quasiparticles.

Figure 1.8: Illustration of two possibili-
ties of strange metallic behavior emerg-
ing from the charge diffusion descrip-
tion.

A lack of understanding also exists for the anomalous scaling be-
havior associated with strange metals. In this subgroup of bad metallic
systems, the resistivity scales (with respect to the temperature) with a
power law that is not consistent with that dictated by the Fermi liq-
uid picture. In the high temperature limit, it has been proposed that
charge transport is best understood from the simple Einstein diffusion
relation [69, 72, 73] that connects the electrical conductivity, σ, to the
charge compressibility, χ, by means of the diffusion constant, D,

σ = χ D. (1.3)

Two possible pictures of universal behavior of strange metallic sys-
tems immediately emerge. One consists of a constant value for the
compressibility while the diffusion constant scales with 1/T, overall
leading to a resistivity that scales linearly with temperature [73]. This
concept is often referred to as the Planckian regime and arguments ex-
tracted from experimental data suggest that a wide range of mate-
rials (including strongly correlated systems and conventional metals)
display a universal Planckian scattering rate [74]. However, these ex-
tracted scattering rates actually differ a lot across materials and the
lack of a universally accepted definition for a transport scattering rate
suggests that perhaps the charge diffusion picture is the safest route
to developing a unified theoretical framework for bad metallic be-
havior [69]. The other picture of universal behavior emerging from
the simple diffusion relation in Eq. (1.3) is that of a constant value
of the diffusion constant while the compressibility instead scales as
1/T, thereby controlling the high-temperature behavior of the resistiv-
ity (see Fig. 1.8).

1.3.1 Displaced Drude peak

Figure 1.9: Transfer of spectral weight
to higher frequencies, with no DDP ob-
served.

While much theoretical discussion has been directed towards efforts of
a unifying theory describing bad metallic (and potentially non-Fermi
liquid) behavior, relatively little focus has been directed towards ex-
plaining another experimental signature of bad metallic systems. This
signature is the appearance of a displaced Drude peak (DDP) in the op-
tical conductivity spectrum as temperature increases beyond the MIR
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Figure 1.10: Evolution of the displaced
Drude peak (pink arrows) in the optical
conductivity spectra of κ-ET2Cu2(CN)3
with increasing temperature (from left
panel to right panel) for fixed doping,
x = 0.28. The dashed line indicates
the location of Mott-Hubbard type exci-
tations. Adapted from Ref. [75].

limit [75]. However, these DDPs only appear in some bad metallic
systems, which could explain the scarcity of theoretical investigations
into their origins. In the bad metallic systems without DDPs, the low-
frequency spectral weight contained in the Drude peak is transferred
to incoherent excitations with high energy scales, such as the upper
and lower Hubbard bands [61, 76] (see Fig. 1.9).

However, in bad metallic systems that host DDPs, the spectral weight
in the zero-frequency Drude peak is shifted to finite frequency values,
thereby forming a DDP. Two general mechanisms have been identified
that are capable of producing DDPs:

1. An additive mechanism that relies on non-quasiparticle collective
modes from pinned charge density waves [70] creating an additional
conduction channel at finite frequencies.

2. A subtractive mechanism in which the build-up of transient local-
ization suppresses the weight at zero-frequency [77].

Figure 1.11: Illustration of two possible
mechanisms leading to the development
of a displaced Drude peak.

An illustration of these mechanisms can be seen in Fig. 1.11. The tran-
sient localization scheme that comprises the second mechanism was
originally developed in the context of organic semi-conductors [78],
where large molecular weights create very slow lattice vibrations that
act as strong electron scatterers. Essentially the electrons explore a
disordered landscape and localize within it. Eventually the disor-
dered landscape changes and the electronic motion resumes before
an ultimate relocalization. This transient localization description of
organic semi-conductors has been incorporated into a unifying theo-
retical framework that smoothly connects the limit of strong disorder
with the limit of weak disorder, or the semi-classical limit [79]. Re-
cently this framework was applied to a many-body electronic lattice
model with electron-phonon interactions that reduced the carrier dif-
fusion, leading to the development of a displaced Drude peak in the
conductivity spectra [77].

Another possible mechanism for localization originates in the self-
generated disorder caused by long-range interactions, which is the fo-
cus of this thesis. Typically, effective models assume that charges are
effectively screened and therefore only treat local interactions, such
as the U term in the Hubbard Hamiltonian (Eq. (1.1)). The Hubbard
model is capable of producing some anomalous transport properties as
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the resistivity calculated from it grows beyond the MIR limit without
showing any sign of changing slope at high temperatures [72]. How-
ever, the DDP phenomenon is not captured in the optical conductivity
spectra, with the growth of the resistivity as temperatures increase be-
ing linked to a transfer of spectral weight to higher values [72, 80].

In this thesis, we demonstrate that the inclusion of non-local (long-
range) interactions provides a microscopic mechanism for bad metallic
transport in the form of a resistivity that greatly exceeds the MIR limit
and the development of a DDP. Furthermore, we show that long-range
interactions give rise to a novel correlated pseudogap phase at zero
temperature. The anomalous behavior driven by such a general mech-
anism provides novel insight into explanations of bad metallic trends
(ρ > ρMIR, DDP) across a wide variety of materials. In the following
section, we discuss a non-exhaustive selection of strongly correlated
materials that display unconventional phenomena and that we deem
pertinent in the context of long-range interactions.

1.4 Experimental candidates

In this section, we aim to provide the reader with a brief introduction
to strongly correlated systems in which long-range interactions either
play, or are suspected to play, an important role in the experimentally-
observed behavior. The systems covered here do not constitute an
exhaustive list, but our hope is that the reader can develop a general
appreciation for the widespread impact of long-range interactions in
strongly correlated materials, and potentially apply that appreciation
to their preferred system of interest. We begin our discussion with
the transition metal oxides, specifically focusing on the famous cup-
rate family of high-temperature superconductors. Following this, we
turn our attention to the broad class of layered organic salts, several
of which also display influences from a charge frustration phenomena.
Finally, we conclude with an analysis of recent experiments in tran-
sition metal dichalcogenide heterostructures and a brief word on the
unique position of cold atom systems in realizing a complete under-
standing of complicated correlation effects in lattice models.

1.4.1 Transition metal oxides

Figure 1.12: Example of the perovskite
crystal structure for Bi2Sr2CuO6.

The group of transition metal oxides is a broad association of materi-
als comprised of oxygen and transition elements in various structures
and stoichiometries. The identity of the transition element can be used
to further classify the materials into subgroups, such as the cuprates,
nickelates, manganates, and ruthenates. An example of the structure
of a representative cuprate member is shown in Fig. 1.12. While in-
dividual properties of different transition metal oxides can vary dras-
tically, they all share a few common features that justify their overall
importance in strongly correlated materials. The valence electrons of
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Figure 1.13: Phase diagram of the
cuprates in terms of temperature T and
hole doping p, with antiferromagnetic
order (AF, blue), pseudogap (yellow),
superconductor (SC, green), Fermi liq-
uid (white), and strange metal (purple)
shown. Reproduced from Ref. [48].

the transition elements correspond to electrons in narrow d orbitals,
causing the electrons to localize at atomic sites due to strong Coulomb
repulsion effects. This interaction-driven localization competes with
orbital hybridization that forms with the p orbitals of the oxygen ele-
ments and promotes electron delocalization [81]. The typically narrow
bandwidth of transition metal oxides signifies the presence of strong
electron correlation effects which produces a rich variety of phases
when combined with the various charge, spin and orbital degrees of
freedom in individual materials [13, 81, 82]. Additionally, many of
these systems can be considered as low-dimensional due to their spe-
cific crystal structure and chemistry [82], thereby inviting studies with
low-dimensional effective lattice models, such as the Hubbard model
on the square lattice.

1.4.1.1 Cuprate superconductors

The cuprate oxides are arguably the most famous family of transition
metal oxides due to the discovery of high-temperature superconduc-
tivity in these systems in 1986 [83–85]. However, we will not focus
on their superconducting properties in this thesis and merely mention
it for the sake of completeness in this discussion. These systems are
composed of superconducting copper-oxide planes that are interca-
lated with charge reservoir layers with the entire complex resembling
a perovskite (see Fig. 1.12). Exotic phases, such as the unconventional
superconductor, typically emerge as these materials are doped away
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from half-filling in which they have one electron per copper atom. At
this filling, the system is a Mott insulator due to the strong Coulomb
repulsion that effectively suppresses any double occupation inside the
narrow d orbitals [86].

Over the past few decades, an immense amount of research has
been conducted on the cuprates and the general phase diagram is
by now well-established (see Fig. 1.13). Despite this intense effort,
many questions remain, including a microscopic understanding of
the observed pseudogap phase and the bad metallic behavior. The
resistivity-temperature curves for a representative member of the cup-
rate family is shown in Fig. 1.14. Typically, theoretical studies of the
cuprates employ the Hubbard model on the square lattice as a minimal
model of strong electron correlation. The cuprates are also frequently
studied with more realistic models, such as multi-band models that
highlight the importance of the oxygen atoms [87]. As there is no ana-
lytical solution to the Hubbard model in two dimensions, recent efforts
have centered on analyzing the numerous competing orders through
application of state-of-the-art numerical techniques, including DMRG
and QMC [88, 89].

Figure 1.14: The resistivity as a function
of temperature for various doping levels
p for Bi2Sr2−zLazCuO6+δ. Adapted from
Ref. [90].

In particular, these studies addressed the seemingly simple question
of the characterization of stripe order in the underdoped region (left
side of the superconducting dome in Fig. 1.13), a phenomenon that was
first discovered in 1995 [91]. Ref. [88] could not successfully recover
the experimentally predicted stripe wavelength with the conventional
Hubbard model (Eq. (1.1)) and concluded that this simplistic model
of electron correlation was missing a key ingredient. One proposed
ingredient was the inclusion of non-local Coulomb interactions, the
contribution of which is expected to be of the order of the energy
scales among the various competing ground states.

Despite the fact that strong correlation effects were discovered in
transition metal oxides almost 80 years ago, we are still very far from
arriving at a commonly accepted, microscopic understanding of their
various exotic phenomena. This shortcoming is particularly glaring in
the case of the cuprates, which have received a tremendous amount
of interest in the recent decades. However, systematic numerical stud-
ies have recently demonstrated that we might be reaching the limits
of knowledge contained within the confines of the Hubbard model,
thereby stimulating the urgent need for effective lattice models that
treat non-local effects. As will be discussed in the following sections,
the development of such models will improve our collective knowl-
edge of not only the cuprates, but also other strongly correlated sys-
tems.

1.4.2 Layered organic salts

Another example of a strongly correlated system that would be well-
described by a non-local (long-range) interacting model is the group
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Figure 1.15: Illustration of the crystal
structure of BEDT-TTF [93, 96]. The lay-
ers of the large ET molecules are sepa-
rated by layers of poorly conducting an-
ions (blue). The ET molecules pack to-
gether in different patterns, which are
labeled by different Greek letters. Exam-
ples of packing structures are shown on
the right.

of layered organic salts. An early prediction that room-temperature
superconductivity should be accessible in synthetic organic materi-
als incited a wave of research into the electronic properties of low-
dimensional organic salts [92,93]. While the discovery of superconduc-
tivity in quasi-one-dimensional salts (known as the Bechgaard salts)
and its theoretical description are interesting in their own right [94], we
choose to focus on quasi-two-dimensional systems constructed from
bisethylenedithio-tetrathiafulvalene (BEDT-TTF). This molecule is com-
monly referred to as ET and its skeletal structure is shown in Fig. 1.16.
These large molecules are typically combined with a monovalent an-
ion in the stoichiometric ratio A2B where A is the ET molecule and B
is an anion [93,95]. These remarkably clean organic crystals are grown
via electrocrystallization and the crystallographic structure consists of
anionic layers interspersed between layers of ET laid out in various
packing configurations (see Fig. 1.15) [93].

Figure 1.16: Structure of BEDT-TTF [97].
Sulfur atoms are shown in yellow.

This class of materials hosts a plethora of phases, including charge
density waves, superconductor, and anti-ferromagnetic insulators [98],
all of which are readily accessible via controllable tuning of various ex-
ternal parameters, such as temperature, pressure, and magnetic field.
The clean nature of the crystals coupled with this accessible control
renders these systems a playground for testing various effective lat-
tice models. While the microscopic specifics underlying each packing
structure might differ, the standard tight-binding model employed is
the extended Hubbard model (or some variation thereof). The Hamil-
tonian for the most general case is given as

HEHM = − ∑
〈ij〉,σ

tij

(
ĉ†

iσ ĉjσ + ĉ†
jσ ĉiσ

)
+ U ∑

i
n̂i↑n̂i↓ + ∑

〈ij〉,σ
Vijn̂in̂j (1.4)

where the last term includes a non-local interaction, V, between nearest-
neighbor sites, 〈ij〉. The inclusion of this term is a departure from the
conventional Mott-Hubbard physics and can be justified by the ob-
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servation that only local potentials (Hubbard U terms) are not suffi-
cient to explain the charge-ordered phases observed in these mostly
quarter-filled materials. Quantum chemistry studies suggest that U,
which is approximately 1eV, is the dominant energy scale (as to be
expected). However, the ratio of intersite interaction to on-site inter-
action, V/U, has been estimated as 0.2-0.7, suggesting that long-range
interactions are important [99–102]. Furthermore, the extended Hückel
method places estimates for kinetic effects, tij, to be around 0.1-0.25

eV [95, 99, 102–105]. Overall, these energy scales qualify quasi-two-
dimensional organics as strongly correlated materials with significant
non-local interactions and we can conclude that proper treatment of
these effects is necessary for understanding their exotic phases.

For a comprehensive review with the
phase diagrams in terms of temperature,
pressure and geometrical structure, the
reader is referred to Ref. [98].

Figure 1.17: Illustration of charge frus-
tration on a triangular lattice. One site
is occupied (black circle), one is unoc-
cupied (white circle) and the system is
frustrated in the sense that it does not
know whether to have the last site be oc-
cupied or unoccupied.

One particular phase of interest is the charge-ordered (CO) insulator
observed at low temperatures in the θ − ET2X family. This phase and
its accompanying melting transition have attracted much theoretical
interest over the past several decades. The CO transition is under-
stood to be driven by charge frustration, which can be explained in
the context of the filling and lattice geometry. These A2B salts are typ-
ically three-quarters filled in terms of electrons (quarter-filled in terms
of holes). If we consider a quarter-filled system, then we expect to find
one particle per two sites on average. As a triangle has three sites,
this filling translates to 1.5 particles every three sites. Therefore, the
system must decide whether to have a particle or not on the third site
of the triangular unit and is said to be frustrated. This geometrical
charge frustration and the strong, long-range electronic correlation are
responsible for the experimental observation of competing charge or-
ders that eventually freeze into a CO insulating phase [59, 106]. This
transition cannot be captured in theoretical models that do not account
for the correlations and the intersite Coulomb interaction [99,107–109].
Fig. 1.18 shows the temperature-resistivity profiles for four members
of the θ-ET2X family. Two materials (θ-CsZn, and θ-RbZn with rapid
cooling) evolve into CO insulators at low temperatures. Interestingly,
θ-TlCo, and θ-RbZn (with slow cooling) exhibit charge glass behavior
at low temperatures, a direct consequence of the frustration arising
from the non-local interactions and the lattice geometry [110].

Figure 1.18: Left: The resistivity as a
function of temperature for θ-TlCo (or-
ange), θ-RbZn (black), θ-CsZn (blue)
and θ-I3 (red). The dashed line in
the main panel indicates the level of
the Mott–Ioffe–Regel limit estimated for
these materials. The inset displays re-
sistivity against T2 for θ-I3. Right: Sys-
tematic variation in the degree of charge
frustration for the series of materials
studied here. Reproduced from Ref. [59]

More recently, attention has turned to understanding the bad metal-
lic phases found near charge ordering in layered organics, specifically
in the quarter-filled, non-dimerized θ − ET2X systems [59]. The phase
diagram for these materials includes charge-ordered insulators and
novel charge glass states, which are the charge analogue of spin glass
states. Interestingly, the degree of geometric frustration depends on
the identity of the X anion, with the most frustrated case occurring
for X=I3. This system lacks a transition to a charge-ordered insulating
state and instead exhibits bad metallic behavior with the resistivity
exceeding the expected value at the MIR limit [59]. It is unclear the
degree to which charge fluctuations from the charge glass play a role
in this anomalous transport. Overall, the clean nature of these materi-
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als hints at the importance of non-local interactions in the observed
exotic phenomena and renders these materials an ideal foundation
upon which to study strongly interacting physics beyond the Hubbard
model.

1.4.3 Transition metal dichalcogenide heterostructures

Over the course of the last decade, twisted bilayer electronic systems
have been the center of attention in many research groups. Strong
correlation effects are also extremely important in these clean systems,
which host a plethora of exotic phases. For example, the phase dia-
gram of magic-angle twisted bilayer graphene presents regions of cor-
related insulating phases and unconventional superconducting phases
[111]. While twisted bilayer graphene is arguably the most famous ex-
ample of bilayer structures, more recently attention has shifted to un-
derstanding the strong correlation physics at play in transition metal
dichalcogenide heterostructures [46].

Figure 1.19: Diagram of a transi-
tion metal dichalcogenide heterostruc-
ture. The different colors indicate that
the atomic identity can be different. The
sandwiching substrate (gray) is typically
hexagonal boron nitride.

Typically semi-conductors, transition metal dichalcogenides (TMDs)
are two-dimensional materials that hold a lot of promise for various
technological applications, such as solar cells, bio-sensors, and ultra
small transistors [112]. The chemical formula for TMDs is of the form
MX2, where M corresponds to a transition metal and X to a chalco-
gen, such as oxygen, sulfur, selenium, tellerium or polonium. The
transition metal layer is sandwiched between two layers of chalcogen
atoms in the crystal structure for monolayer TMD. The most com-
monly studied TMDs are molybdenum disulfide (MoS2), molybdenum
diselenide (MoSe2), tungsten disulfide (WS2), and tungsten diselenide
(WSe2) [112]. The two-dimensional TMD layers can be stacked upon
each other, where the layers are held together with weak van der Waals
forces. This structure is known as a van der Waals heterostructure and
can provide unique function that is not otherwise observed in mono-
layer TMDs (see Fig. 1.19).

Figure 1.20: The Coulombic potential en-
ergy dominates at large rs (low density),
leading to an ordered phase. Calcula-
tions have predicted that the hexagonal
phase has the minimal energy configura-
tion in two-dimensions [113].

In particular, these materials can be combined and stacked to form
Moiré superlattices. These systems have large unit cells and very nar-
row bandwidths which produce particularly strong correlation effects
that in turn give rise to exotic phases. In particular, a recent study
announced the discovery of a Mott insulating phase and generalized
Wigner crystal phases at fractional filling in a van der Waals het-
erostructure constructed from WSe2 and WS2 [46]. The Mott insulating
phase was discovered at a filling that corresponds to one hole per su-
perlattice site (n = 1), while the proposed Wigner crystal phases were
discovered at filling fractions n = 1/3, 2/3. A later study confirmed
the presence of these correlated insulator phases and also provided
evidence for more correlated insulating phases at different fractional
fillings [45].

Wigner crystals are perhaps the most familiar phenomena arising
from long-range interactions. These phases, originally predicted in
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Figure 1.21: Left: Illustration of the
moiré superlattice for the the WS2/WSe2
heterostructure with one carrier per
moiré unit cell (n = 1). Top row: Pat-
terns for the triangular Wigner crystal
formed at fractional fillings of n = 1/3
and 1/4. Bottom row: Patterns for the
striped Wigner phase formed at frac-
tional fillings of n = 1/2 and 1/6. Re-
produced from Ref. [120].

1934 [114] and discovered in liquid helium in 1979 [115], are formed
by the domination of the Coulomb repulsion among electrons in com-
parison to their kinetic energy. Wigner argued that the potential en-
ergy scales as 1/rs whereas the kinetic energy scales as 1/r2

s in a low-
density homogeneous electron gas where rs is defined as the average
interparticle spacing in units of the Bohr radius [116]. At sufficiently
low densities, the Coulomb repulsion would therefore dominate and
cause the electrons to crystallize into a minimum energy configura-
tion (see Fig. 1.20). Originally predicted to occur in three-dimensional
solids, experiments have thus far only observed Wigner crystal phases
in lower-dimensional systems [115, 117], which is already a remark-
able feat due to its fragile character. Additionally, there has been
much theoretical discussion concerning the nature of the melting tran-
sition [118, 119].

Overall, the clean nature of TMD heterostructures (and potentially
other bilayer systems [121,122]) provides an ideal playground on which
to explore these unanswered questions concerning long-range (Wigner)
physics. A thorough investigation into the impact of long-range inter-
actions on transport properties would be particularly of interest. The
novel insulating phases discovered in Refs. [45, 46] point to the need
for theoretical approaches capable of providing a controlled analysis of
the impact of long-range interactions in correlated electronic systems.

1.4.4 Atomic, molecular and optical systems

Before concluding, we would like to briefly discuss the use of atomic,
molecular, and optical (AMO) systems for simulating lattice Hamilto-
nians and how these systems could play a crucial role in unraveling the
complicated correlation effects of long-range interactions. The AMO
field has its foundations in the successful creation of a Bose-Einstein
condensate in dilute atomic gases in 1995 [123]. Since then the field
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Figure 1.22: Illustration of the exper-
imental scheme that realizes a lattice
model with on-site and infinite-range in-
teractions. A stack of two-dimensional
systems along the y axis is exposed to
a two-dimensional optical lattice in the
x − z plane (red arrows). Reproduced
from Ref. [130].

has exploded and presently many experimental setups can be used to
simulate quantum lattice models, including cold atomic gases, trapped
ion arrays, Rydberg atom arrays, and optical lattices [124, 125]. These
systems are highly tunable and as such can be tuned in a controllable
manner from a regime with well-understood physics to a regime that
remains a challenge for theoretical and numerical approaches. For ex-
ample, the interaction strength, U/t, in optical lattices is controlled
by the depth of the lattice potential and has been used to study the
transition from a superfluid to a Mott insulator in the Bose-Hubbard
model [126].

Bad metallic transport in the Hubbard model (i.e. without long-
range interactions) has also recently been studied in optical lattice sys-
tems [127–129]. These studies have shown that the high-temperature
behavior of the Hubbard model gives rise to a resistivity that grows
linearly with temperature, crossing the MIR limit without any changes
in slope or scaling behavior. However, studies of the optical conduc-
tivity are unable to explain the displaced Drude peak phenomenon
previously discussed [80, 128].

Recently, experimental platforms have been constructed that can be
used to study quantum systems with long-range interactions: Ryd-
berg atoms, dipolar quantum gases, polar molecules, quantum gases
coupled to optical cavities, and trapped ions. Trapped ion setups use
lasers to confine ions into equilibrium configurations and have been
used to study effective spin models with power-law type interactions,
|i − j|−α, where the range can be tuned from α = 0 to 3 [125]. For
several years now, the Hubbard model has been studied by means
of ultracold atomic gases [124, 131], but recently coupling to a cavity
has emerged as a promising avenue with which to add long-range in-
teractions into the systems under study [47, 130] (see Fig. 1.22). We
hope that this provides the reader with a sampling of AMO methods
uniquely situated to study long-range interacting lattice models. More
details can be found in the recent review of Ref. [47].

Overall, the abundance of AMO platforms provides us with direct
access to well-controlled studies of quantum lattice models. Not only
are a number of setups capable of hosting long-range interactions,
but the interaction strength and range can be tuned in these systems,
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thereby opening the door to investigations focused on extricating the
effect of these interactions in many-body physics [47]. This holds a
lot of promise for many future studies, particularly those targeting the
role of long-range interactions in bad metallic transport.

1.5 Summary and perspectives

In this chapter, we have presented a broad picture of the state-of-the-
art in strongly correlated electronic materials. In particular, we have
discussed the immense progress made in the theoretical description
of these systems, which undoubtedly would not have been possible
without the simultaneous development of cutting edge numerical tech-
niques. Despite these advances, experimental observations of unex-
plained phenomena continue to challenge our perspectives and drive
us to develop new theoretical ideas. A microscopic explanation for
bad metallic behavior observed in numerous systems notably stands
out as one such challenge.

This unconventional electronic transport manifests itself in mate-
rials with strikingly different characteristics, such as their chemical
components and crystalline structure. Notwithstanding these physical
differences, experimental observations for each system suggest that
long-range electron interactions could play an important role in their
expressions of strongly correlated behavior. However, effective lattice
models typically neglect the effects of long-range interactions by im-
plementing screening-based approximations that truncate the range of
interactions. The fact that long-range interactions are consequential in
terms of producing exotic correlated behavior and that they are often
overlooked therefore sets the stage for the examination of the effect
of long-range interactions in effective lattice models of strongly corre-
lated materials in this dissertation. The following chapter will address
technical details regarding the implementation of long-range interac-
tions in numerical studies of quantum studies. Following this, we will
discuss our results from an exact diagonalization study at zero temper-
ature of a model of spinless electrons before proceeding to our finite-
temperature results that examine their role in generating bad metallic
transport.
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2.1 Introduction

Over the course of the past century, effective lattice models and their
underlying approximations have greatly advanced our understanding
of a variety of electronic systems in condensed matter and solid-state
physics. However, modern condensed matter focuses on the under-
standing of strongly correlated matter which cannot be solved ana-
lytically in many cases. This limitation has therefore spurred the de-
velopment of advanced numerical techniques designed specifically to
study these correlated systems, such as density matrix renormalization
group [25–28], exact diagonalization [32, 33, 132], and quantum Monte
Carlo [29–31].

As each numerical technique incurs its own set of limitations, one
must appropriately choose which technique (or set of techniques) to
apply to each individual problem. For example, quantum Monte Carlo
excels in extracting finite-temperature properties of quantum systems
in the thermodynamic limit but can be plagued by the so-called sign
problem in which Hamiltonian matrix elements can be negative, ren-
dering them incompatible with a probabilistic approach [133]. In our
case, we are interested in understanding the effects of long-range in-
teractions in low-dimensional quantum systems, which requires a ver-
satile numerical technique to assess the interplay of these interactions
with other parameters of the system, such as the presence of spin or
geometrical structure of the lattice.

Exact diagonalization satisfies this requirement by granting com-
plete control over the various microscopic degrees of freedom present
in our models including (but not limited to) the lattice geometry, the
form of interactions, the range of interactions, the presence of spin,
and the temperature. First pioneered in Ref. [132] for numerical stud-
ies of correlated Hamiltonians, this approach also provides access to
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a wide range of static and dynamical observables necessary to charac-
terize the physics of long-range interacting systems, such as the Drude
weight, D, and the single-particle spectral function, A(ω), which will
both be discussed in greater detail in Chapter 3. With this extremely
versatile technique, we can choose an appropriate basis in which to
write the Hamiltonian as a matrix to be diagonalized. The eigenval-
ues and eigenvectors obtained from the diagonalization procedure can
then be manipulated to provide relevant information about the system.
The following sections shall address the theoretical and developmen-
tal/technical background of exact diagonalization and some specific
details necessary for studies of strongly correlated systems, with a
special focus on techniques that are useful in studies of long-range
interacting models.

2.1.1 Basis representation

Let us begin by assuming that we have an arbitrary Hamiltonian, H,
that defines the energetics of our system of interest with N sites. Before
we can write H in the form of a matrix, we must first choose an appro-
priate basis of states, {|φ〉}. The choice of basis is problem-dependent
and as we are interested in studying a fermionic lattice model, we
choose to define our basis in terms of the occupation number of sites
in real space. The occupation number operator is defined as n̂i,σ where
i ∈ 0, 1, . . . , N − 1 indexes the sites and σ indexes the spin sector (↑ or
↓) under consideration.

0 0 01 1 1 1 1 1 1

Figure 2.1: Example configuration of
spinless particles, |φ〉.

For example, let us suppose that we are interested in a model of
spinless particles on a one-dimensional chain with N = 10 sites. As the
particles are spinless, we can neglect the spin index, σ, and consider
states |φ〉 = |n0 ni . . . nN−1〉. A generic state in this basis could then
be numerically represented as a binary string:

|φ〉 = 0111010111 (2.1)

where the i-th element of the string tells us whether or not site i is
occupied (see Fig 2.1).

This binary string representation can also be readily adapted for
spinful systems. Assuming that we are interested in spin-1/2 par-
ticles (σ =↑, ↓), we can increase the length of the string from N to
2N. The first N values in the bitstring are then defined as the occupa-
tion number representation of a fixed spin sector, σ =↑ for example.
Consequently, the second N values describe the occupation number
representation of the other spin sector, σ =↓. For example, the state
|φ〉 = |↑, ↓, ↑, ↓↑, 0, ↓〉 could be represented by

|φ〉 = 101100︸ ︷︷ ︸
ni,↑

010101︸ ︷︷ ︸
ni,↓

, (2.2)

on a chain with N = 6 sites (see Fig. 2.2).

0 01 1 10

1 0 1 1 0 1

Figure 2.2: Example configuration of
spinful particles, |φ〉. This particular representation is advantageous because each com-

ponent of the binary string is a bit (0 or 1), which is the smallest unit
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of information in computing. For convenient storage and access, we
can furthermore think of each binary string as a representation of an
integer. We can represent 2N integers (from 0 to 2N − 1) by binary
strings of a fixed length N. For example, for a spinless chain of N = 3,
we can represent 8 integers with strings of length 3:

000 = 0 100 = 4

001 = 1 101 = 5

010 = 2 110 = 6

011 = 3 111 = 7

where the integer value can be read off from the bit string as

I =
N

∑
l=1

nl2
l−1. (2.3)

The states and their respective integer representations are depicted in
Fig. 2.3. Representing each state, or configuration, with a unique in-
teger is extremely convenient for organization and storage purposes.
Furthermore, being able to convert between integer representations
and bit string representations is opportune because we can easily trans-
late an integer into a configuration of bits, upon which we can perform
certain manipulations (such as flips) in order to represent the actions
of our operators on the states.

Figure 2.3: Example of integer represen-
tation of spinless particles.

A note on convention: the value nl is the
value of the l-th bit, where the bits are
ordered from right to left.

Figure 2.4: Illustration of Hamiltonian
matrix. Diagonal elements (blue) do not
change the state |φ〉, while off-diagonal
elements (green) do.

Armed with an appropriately-selected and advantageous basis rep-
resentation, we may now proceed to constructing a Hamiltonian ma-
trix. This matrix will have dimensions NH × NH where NH is the size
of the Hilbert space, or in other words, the number of states. The
matrix elements will correspond to the values obtained from the vari-
ous operations involved in the Hamiltonian. These values are model-
dependent and we will only refer to them in an abstract sense so that
the reader can develop a general understanding of the Hamiltonian
matrix and its treatment during the diagonalization procedure. In par-
ticular, we would like to emphasize that operations that do not change
the identity of a basis state will yield diagonal elements, while opera-
tions that transform one basis state into another will yield off-diagonal
elements. Once the Hamiltonian matrix has been established, we may
turn our attention to the numerical task of diagonalization, which is
covered in the following sections.

2.1.2 Diagonalization and limitations

Linear algebra defines a square matrix, A, to be diagonalizable if it
is similar to a diagonal matrix. In other words, A is diagonalizable if
there exists an invertible square matrix, C, and diagonal square matrix,
D, such that

A = CDC−1 (2.4)
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where all matrices have dimension n× n. Diagonalizable matrices can
be written in terms of their eigenvalues, {λi}, and eigenvectors, {v},
as

Av = λv.

As the Hamiltonian is Hermitian, we are interested in the special caseA Hermitian matrix a complex, square
matrix that is equal to its conjugate
transpose, A = A†.

of the eigendecomposition of complex, Hermitian matrices. The spec-
tral theorem states that

(a) all Hermitian matrices are diagonalizable,

(b) all eigenvalues are real,

(c) and the eigenvectors corresponding to different eigenvalues
are orthogonal.

For more information about numerical
methods of linear algebra, please refer
to Refs. [134, 135].

We are generally interested in solving for the eigenvalues and eigen-
vectors of a Hamiltonian matrix,

Hv = λv, (2.5)

because the eigenvectors constitute an orthogonal basis of the Hilbert
space and can be used to easily extract relevant information about
the system of interest. If we rearrange the eigendecomposition of the
Hamiltonian matrix, we obtain

(H− λ1)v = 0, (2.6)

where 1 is the identity matrix of the same dimensions as H. This im-
plies that det(H− λ1) = 0 and provides us with a method to obtain
all of the eigenvalues of H: solving for the roots of the characteristic
equation. The roots (eigenvalues) can then be re-inserted into the char-
acteristic equation to solve for the eigenvectors. Unfortunately, solving

The expression P(λ) = det(H− λ1) is
called the characteristic polynomial.

for the roots of this highly non-linear equation is only practical for ex-
tremely small system sizes.

The Hilbert space of a quantum lattice model scales with the num-
ber of sites, typically as nN

dof, where ndof is the number of degrees of
freedom on a given site and N is the total number of sites in the lattice.
For example, spinless particle systems scale as 2N and spinful systems
scale as 4N . This exponential growth of the Hilbert space with the
number of sites is demonstrated in the left panel of Fig. 2.5. Not only
does a large Hilbert space result in a progressively more complicated
non-linear characteristic equation, but it also guarantees that one will
very quickly hit the memory limits of modern computers.

This concept is also illustrated in the right panel of Fig. 2.5, where
a rough estimate for the memory requirements for the Hamiltonian
are plotted as a function of N. These estimations for the memory
have assumed that the Hamiltonian is stored as a dense matrix using
a complex data type with 128 bits where the real and imaginary parts
are each represented by a double-precision float. The gray line indi-
cates a reasonable amount of memory (256GB) available on modern
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Figure 2.5: Left: Exponential growth of
the Hilbert space size, NH , with the
number of sites, N. Right: Memory re-
quired (in gigabytes) to store the Hamil-
tonian corresponding to the number of
sites, N. Both plots display results for
spinless (light green lines) and spinful
(dark blue lines) systems.

computing clusters. We quickly realize that naïve implementations of
an exact diagonalization code will restrict calculations to systems of
N . 16 for spinless systems and N . 8 for spinful systems. These
sizes are typically too small to justify that one has reached the thermo-
dynamic limit and different approaches must be explored to overcome
these limitations of exact diagonalization.

The next two sections include a discussion on the two main avenues
for lightening the computational workload:

1. Efficient implementation of variables and algorithms (sparse
matrix format, Lanczos diagonalization).

2. Reduction of the Hilbert space motivated by physical intuition
(restriction to fixed particle or spin sector, use of translational
and point-group symmetries).

The first section will highlight relevant technical points in the devel-
opment of an exact diagonalization code, while the second will focus
on using physical understanding to maximize our success on these
finite-sized systems. Following these two sections, we will proceed to
discuss two more techniques (twisted boundary conditions and Ewald
summation) that are crucial to obtaining model-specific accurate re-
sults from finite-size calculations, particularly for our long-ranged in-
teracting model of interest which will be discussed in detail in Chap-
ter 3.

2.2 Efficient implementation

For the sake of simplicity, let us assume that we are interested in study-
ing a spinless lattice system with N sites that is described by a Hamil-
tonian with an off-diagonal (kinetic) term that scales with N and the
lattice coordination (z), and with a diagonal (interaction) term that
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scales with N. The Hilbert space is described by a basis of NH or-
thonormal states; therefore, the Hamiltonian matrix will have dimen-
sions NH × NH. We shall work under the assumption that the opera-
tors are complex and Hermitian, which requires us to store the Hamil-
tonian matrix elements as memory-intensive, complex data types.

For reference, the standard complex data
type in Python, numpy.complex128, oc-
cupies 128 bits of memory.

In order to reduce the memory load, we are obliged to find a re-
sourceful method to store the Hamiltonian. Upon inspection of the
terms of the Hamiltonian, we observe that the matrix is sparse which
means that most of its components are zero. In other words, a state in
the Hilbert space is only connected to a finite number of other states
via the operators present in the Hamiltonian. The diagonal term leaves
a state unchanged,

〈
φj
∣∣Ôdiag

∣∣φi
〉
= Oijδij, where δij = 0 if i 6= j

where Ôdiag is the operator and Oij is the expectation value of Ôdiag

on |φ〉. Therefore, we cannot improve the storage of the NH diagonal
matrix elements.

However, the operators in the off-diagonal term act on a state, |φ〉,
and transform it into another state,
〈
φj
∣∣Ôoff−diag

∣∣φi
〉
= Oijδij, where δij = 0 if

∣∣φj
〉
6= Ôoff−diag |φi〉

From the scaling information of the off-diagonal operators, we realize
that the number of non-zero off-diagonal elements is Noff−diag ∼ NH×
N × z. As a result, the Hamiltonian matrix can be stored in sparse
matrix format, with a reduction of stored components from NH × NH
to NH(1 + zN).
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Figure 2.6: Memory requirements for
storage of sparse Hamiltonian.

As we see from Fig. 2.6, utilizing a sparse storage implementation of
the Hamiltonian increases the limiting size from N = 16 to N = 26 for
spinless systems and from N = 8 to N = 13 for spinful systems. The
limiting size can further be increased by computing matrix elements on
the fly or by using distributed memory architectures. However, these
approaches will not be discussed here as we chose to focus our efforts
on the implementation of twisted boundary conditions and the Ewald
summation, which will both be discussed in the later half of this chap-
ter. Instead, we will move to a discussion of the Lanczos algorithm, an
efficient diagonalization routines for Hermitian matrices.

2.2.1 Lanczos algorithm

While certain algorithms can solve for all eigenpairs (eigenvalues and
eigenvectors) of a matrix, such as the QR algorithm, we are typically
not interested in all of the eigenpairs of a system in condensed mat-
ter physics [134]. Instead, we are usually only interested in solving

The QR algorithm returns all eigenpairs
(eigenvalues and eigenvectors) of a gen-
eral dense matrix, A, by performing a so-
called QR decomposition, A = QR, into
an orthogonal matrix, Q, and an upper
triangular matrix, R, [134].

for the ground state wave vector and its associated (ground state) en-
ergy. Already with one eigenpair we will be able to extract valuable
information about the ground state of a system at zero temperature.
If we are interested in understanding excitations or finite temperature
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properties, then we will need to solve for more eigenpairs but for the
moment we shall only focus on solving for the lowest extremal eigen-
pair (the ground state).

In particular, we shall focus on the Lanczos algorithm, named after
Cornelius Lanczos who developed it in 1950 [136]. The following dis-
cussion and derivation of the Lanczos algorithm is based in a large part
upon summer school notes found in Refs. [137,138] and is intended as
a gentle introduction for the Lanczos novice. This algorithm is derived
from another family of numerical diagonalization algorithms, known
as power methods [134]. The main idea of the Lanczos algorithm is to
construct an effective basis, the Krylov basis, from which we can build
a tri-diagonal matrix whose low-lying eigenvalues approach those of
the full Hamiltonian matrix. This entire algorithm relies on a series

We will denote the Krylov basis with the
symbol K.

of various linear algebra operations, such as matrix multiplication and
addition. To handle these operations easily and efficiently, we will
make use of external linear algebra libraries: Armadillo for C++ codes,
and NumPy and SciPy for Python codes.

Armadillo documentation

NumPy documentation

SciPy documentation

The first step of the algorithm involves building an initial vector,
|x̃0〉, whose components are selected from a random distribution. The
length of |x̃0〉 should be equal to the number of states in our basis, NH,
which is also the dimension of our Hamiltonian matrix, NH × NH. The notation |x̃i〉 signifies that a vector is

not normalized.This vector is normalized as

|x0〉 =
|x̃0〉
‖x0‖

(2.7)

and we may proceed the next steps, which add new vectors to the
Krylov basis. The following step is to compute the expected energy of
the normalized, initial vector, |x0〉, as

ε0 = 〈x0|Ĥ|x0〉 . (2.8)

where Ĥ is the Hamiltonian describing our system of interest. The
computation of the energy is a process that will be repeated through-
out the algorithm and the energy, εi, must be stored at each step. Now
we can turn our attention to adding the next vector to the basis K:

|x̃1〉 = Ĥ |x0〉 − ε0 |x0〉 . (2.9)

This particular definition is chosen to ensure that an orthogonal basis
is being constructed. However, it is recommended to continue to use
the Gram-Schmidt orthogonalization procedure at every step to pre-
vent numerical errors and improve the stability of the algorithm. This

The interested reader can find a more
details on the Gram-Schmidt orthogo-
nalizatoin in Appendix A.

vector should also be normalized accordingly,

|x1〉 =
|x̃1〉
‖x̃1‖

. (2.10)

From Eq. (2.8), we can see that |x1〉 should be orthogonal to |x0〉.
Orthogonality of |x0〉, |x̃1〉:
〈x0|x̃1〉 = 〈x0|Ĥ|x0〉 − ε0 〈x0|x0〉

= ε0 − ε0 = 0We can again define the expected energy for this new vector as ε1 =

〈x1|Ĥ|x1〉 and store its value for use in future steps. At this point, we

http://arma.sourceforge.net/
https://numpy.org/doc/
https://docs.scipy.org/doc/scipy/reference/
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have two vectors, K = {|x0〉 , |x1〉}. These can be used to build the
next vector in the basis, |x̃2〉, which is defined as

|x̃2〉 = Ĥ |x1〉 − ε1 |x1〉 − k1 |x0〉 , (2.11)

where k1 is chosen to be

k1 = 〈x0|Ĥ|x1〉 (2.12)

in order to guarantee that |x̃2〉 is orthogonal to |x1〉 and |x0〉. We canOrthogonality of |x0〉, |x1〉, |x̃2〉:
〈x1|x̃2〉 = 〈x1|Ĥ|x1〉 − 〈x1|ε1|x1〉

− 〈x1|k1|x0〉
= ε1 − ε1 − k1 〈x1|x0〉
= 0

〈x0|x2〉 = 〈x0|Ĥ|x1〉 − 〈x0|ε1|x1〉
− 〈x0|k1|x0〉

= k1 − ε1 〈x0|x1〉 − k1 〈x0|x0〉
= 0

also see that k1 is simply the norm of |x̃1〉 by recalling from Eq. (2.9)
that |x̃1〉 = Ĥ |x0〉 − ε0 |x0〉. If we rearrange for Ĥ |x0〉 and then take
the complex conjugate, then we obtain 〈x̃1| + ε0 〈x0|, which we can
insert into the expression for k1,

k1 = 〈x0|Ĥ|x1〉 (2.13)

= 〈x̃1|x1〉+ 〈x0|ε0|x1〉
= ‖x̃1‖

where we have used Eq. (2.10) and the orthogonality of |x0〉 and |x1〉.
In addition to εi, we will also need to keep track of these normalization
values, ki, at each step. Now with the εi and ki computed in the pre-
vious steps, we can build the vector |x̃2〉, defined in Eq. (2.11), and its
associated energy expectation value, ε2, and normalization constant,
k2. From this point forward, the iterative structure of the Lanczos al-
gorithm becomes apparent and we can continue iterating to form an
orthonormal basis of our Krylov vectors. The scheme is as follows:

|x̃n+1〉 = Ĥ |xn〉 − εn |xn〉 − kn |xn−1〉 (2.14)

εn = 〈xn|Ĥ|xn〉 (2.15)

kn = 〈xn−1|Ĥ|xn〉 = ‖x̃n‖ (2.16)

|xn+1〉 =
|x̃n+1〉
‖x̃n+1‖

(2.17)

In a manner similar to the orthogonality condition proved above, we
can demonstrate that each new vector, |x̃n+1〉, is orthogonal to all the
others in the Krylov basis.

〈xn|x̃n+1〉 = 〈xn|Ĥ|xn〉 − εn 〈xn|xn〉 − kn 〈xn|xn−1〉 (2.18)

= εn − εn − 0 = 0.

〈xn−1|x̃n+1〉 = 〈xn−1|Ĥ|xn〉 − εn 〈xn−1|xn〉 − kn 〈xn−1|xn−1〉 (2.19)

= kn − 0− kn = 0.

Thus, for any i = 1, . . . , n− 2 we realize that the overlap between |xi〉
and any vector |x̃n+1〉 is

〈xi|x̃n+1〉 = 〈xi|Ĥ|xn〉 − εn 〈xi|xn〉 − kn 〈xi|xn−1〉 = 〈xi|Ĥ|xn〉 . (2.20)
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Because of the Hermitian nature of Ĥ, we see that

〈xi|Ĥ|xn〉 =
(
〈xn|Ĥ|xi〉

)∗
(2.21)

=
(
〈xn|

(
|x̃i+1〉+ εi |xi〉+ ki |xi−1〉

))∗

= 0.

In other words, the matrix elements of the Hamiltonian computed in

We will denote the Hamiltonian pro-
jected onto the Krylov basis as HKn ,
where n indicates the iteration number.

the Krlyov basis, K, are zero if the difference in indices (iteration num-
bers) is greater than 2:

HKn,i = HKi,n = 0 if |i− n| > 2. (2.22)

Therefore, HK possesses a tridiagonal structure, populated with the
energy expectation value for each vector |xi〉 and the overlap between
neighboring vectors, ki = 〈xi−1|Ĥ|xi〉 and ki+1 = 〈xi|Ĥ|xi+1〉. Here is
an example of the structure after n = 4 iterations:

HKn=4 =




ε0 k1 0 . .
k1 ε1 k2 0 .
0 k2 ε2 k3 0
. 0 k3 ε3 k4

. . 0 k4 ε4




.

As the algorithm proceeds, HK will have dimensions that correspond
to the number of Lanczos iterations, L, which is typically much smaller
than the number of states in the basis. At each step n, we can diag-
onalize HK to obtain its ground state eigenvalue, En

0 , and check its
convergence with respect to the eigenvalue obtained from the previ-
ous iteration, En−1

0 .
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Figure 2.7: Convergence of eigenvalue
spectrum to exact (dashed, black) with
increasing number of iterations for long-
range interacting model of spinless elec-
trons, the specific details of which will
be discussed in Chapter 3.

Once the desired convergence has been reached, the eigenvalues re-
turned from the diagonalization of the tri-diagonal matrix in the last
iteration are a very good approximation to the true eigenvalues of the
large Hamiltonian matrix that we are unable to fully diagonalize via
brute-force methods. The iterative Lanczos scheme converges to the
extremal (maximal or minimal) eigenpairs quickly. Figure 2.7 illus-
trates how the low-lying eigenvalues converge quickly with the num-
ber of iterations. As the number of iterations increases and approaches
the size of the Hilbert space, NH, the spectrum converges to that of the
exact, full spectrum.

Obtaining the lowest-lying eigenvalues is already quite an achieve-
ment and we can learn a lot of information about the system simply in
terms of these eigenvalues. For instance, we can study how the value
of the energy per particle changes as a function of a given parameter,
such as the strength of electronic interactions. Similarly, we can exam-
ine the degeneracy of the ground state(s) and determine the internal
energy gap, ∆ = E0− E1, where E0 is the energy of the ground state(s)
and E1 is the energy of the lowest-lying excited state. This quantity
can be used to characterize the ground state as metallic or insulating.
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In addition to extracting information from the eigenvalues, we will
also want to extract information from the eigenvectors returned from
diagonalizing the tri-diagonal matrix in the last iteration. We can use
these eigenvectors as a good approximation to the eigenvectors of the
original Hamiltonian matrix, |Ψv〉, via the following construction

|Ψv〉 =
L

∑
i=1

cv
i |xi〉 , (2.23)

where {|xi〉} are the Krylov vectors created at each iteration and the
number of iterations reached is L. The cv

i are the components of the
eigenvectors obtained from the diagonalization of the tri-diagonal ma-
trix. If we are interested in accessing eigenpairs corresponding to ex-
cited states, then the convergence criterion will need to be modified
appropriately.

For more information about computing
specific observables, especially dynamic
quantities, please refer to Refs. [137,139].

In this section we have discussed many technical details regarding
the diagonalization of large, Hermitian matrices. By recognizing that
our Hamiltonian matrix is sparse, we can immediately identify more
efficient storage methods. Furthermore, we can turn to specialized
algorithms that are capable of efficiently diagonalizing sparse, Her-
mitian matrices. In our work in particular, we have implemented the
Lanczos algorithm in order to increase the sizes of systems accessible
via the exact diagonalization technique. In addition to the applica-
tion of the Lanczos algorithm, we also employ symmetries in order
to increase the finite-size limits. This topic will be covered in the fol-
lowing section and then we will conclude with a discussion of other
numerical methods designed to improve treatment of strongly corre-
lated systems.

2.3 Symmetries

At the end of Sec. 2.1.2, we stated that we can use two main ap-
proaches to lighten the computational workload of an exact diagonal-
ization code and to increase the size of systems to be studied. The first
approach, discussed in Sec. 2.2, relies on optimizing various choices
involved in the numerics, including the storage representations and
the diagonalization algorithm. This present section will discuss the
second approach, which relies on the use of symmetries to reduce
the size of the Hilbert space in an effort to further streamline calcula-
tions [140–142].The interested reader is invited to learn

more about the applications of group
theory to modern condensed matter
physics in Ref. [143].

The Hamiltonians that describe most, if not all, modern condensed
matter physics systems possess inherent symmetries. Formally, we can
define a symmetry transformation as the effect of a unitary operator,
U, and we say that the Hamiltonian is invariant under that action if U
commutes with the Hamiltonian,A unitary operator satisfies UU† =

U†U = 1.

[H, U] = HU −UH = 0. (2.24)
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The operators that leave the Hamiltonian invariant under their oper-
ations give rise to good quantum numbers. A simple example of this
is the total particle number operator, N̂, which can be used to define
the average filling of the system. For example, if one considers the The total particle number N̂ is defined

as ∑iσ ĉ†
iσ ĉiσ for spinful systems and as

∑i ĉ†
i ĉi for spinless systems.

Hubbard model (introduced in Chapter 1), it is straightforward to see
that N̂ should commute with the Hamiltonian.

Figure 2.8: Illustration of transforma-
tion of a sparse matrix to a sparse,
block-diagonal matrix where colors dis-
tinguish different symmetry sectors. For
example, blue corresponds to states with
N = 1, green to N = 2, and purple to
N = 3, where N is the number of parti-
cles.

We can use these symmetry transformations to our advantage to
write a symmetrized basis such that the Hamiltonian matrix is trans-
formed to a block diagonal structure. The dimensions of each block
will necessarily be smaller than those of the untransformed matrix by
a factor approximately equal to the number of symmetries present,
Ns. The diagonalization of each smaller block will be much easier and
faster than the diagonalization of the original, non-symmetrized ma-
trix. Furthermore, each block will provide insight into the physics of
that particular symmetry sector, which might not have otherwise been
evident from diagonalization of the entire (non-reduced) Hamiltonian.

In the simple case of reduction based on fixed particle number, we
can restrict our calculation to a specific particle number sector that is
of interest. To better understand the benefits of this simple reduction,
let us assume that we are interested in studying a spinful electronic
system and calculate the necessary basis size. For L sites in a given
lattice, the size of the Hilbert space grows exponentially as 4L and
diagonalization of matrices of this size quickly becomes intractable.
However, if we introduce a simple assumption, such as a restriction
of the density to the half-filled case, n = 1.0, then we can reduce the
number of states in our computational basis. This specific example
would reduce the size of the Hilbert space to 2L!/(L!)2.

We define the filling as the number of
particles per site, n = N/L.

L sites Full basis Reduced basis

4 256 70

6 4096 924

8 65,536 12,870

10 1,048,576 184,756

12 16,777,216 2,704,156

Table 2.1: Dimensions of the Hamilto-
nian matrix for systems of L sites. The
restriction to half-filling reduces the di-
mension of the matrix to be diagonalized
by a factor ∼ L.

Block diagonalizing the Hamiltonian by fixing the particle number (or
density) sector already yields a useful reduction of dimensions. How-
ever, one can typically reduce further by utilizing the inherent sym-
metries of the underlying lattice. In the following discussion, we shall
develop more formally the use of translation and point group symme-
tries to build a symmetrized basis for the Hamiltonian of interest.

2.3.1 Implementation

We begin with a few useful definitions from group theory. In our
case, we will consider a group composed of various symmetry opera-
tions, such as rotations, reflections and inversions. For example, if we
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consider the group of symmetry operations possible on an equilateral
triangle (Fig. 2.9), then it is straightforward to see that this group has 6

elements. While visualizing one individual operation is simple, visual-
izing repeated operations rapidly becomes cumbersome. Furthermore,
the visual consideration of composite symmetry operations on more
complicated geometrical objects (such as two-dimensional lattices) is
extremely inconvenient. However, this inconvenience can instead be
overcome with the use of matrix representations for symmetry opera-
tions.

A mathematical group is a collection of
elements that:

1. contains an identity element, E

2. contains an inverse for each element

3. obeys the associative law, (AB)C =
A(BC)

4. returns another element of the group
if two elements are multiplied to-
gether.

1

2 3

Figure 2.9: The 6 different symmetry op-
erations are: E (identity), two rotations
by π/3 and 2π/3, and three reflections
about the gray lines stemming from each
vertex.

Matrix representations represent each symmetry operation by a ma-
trix such that the products of the matrices behaves as the product of
the operations does:

M(AB) = M(A)M(B). (2.25)

Here, M(A) signifies the matrix representation of the symmetry opera-
tion A. These matrix representations (and their ensuing linear algebra
operations) are much easier to work with in terms of analytical and
numerical calculations. For example, the matrix representation of the
rotation of a triangle by 2π/3 (see Fig. 2.9) in terms of Cartesian coor-
dinates is: 


−1/2 −

√
3/2 0√

3/2 −1/2 0
0 0 1


 . (2.26)

However, these matrix representations are typically not unique. There-
fore, in order to effectively work with the matrix representations of the
symmetries in our system, we will need to use the characters, or the
traces of the matrices, as these will remain invariant under transfor-
mation. We can also overcome the ambiguity of the matrix represen-

The representations are not unique be-
cause they can undergo a similar-
ity transformation, UM(A)U−1, which
changes the matrices but not the trace
(sum of the diagonal elements). tations by working with irreducible representations of the symmetry

elements. An irreducible representation signifies that a given matrix
representation of a symmetry group cannot be written in terms of a
matrix with lower dimensionality. Irreducible representations are im-
portant from a physical point of view because they describe the trans-
formation properties of a set of eigenfunctions and correspond to dis-
tinct energy eigenvalue [143].

Figure 2.10: Illustration of point group
and translation symmetries in isotropic
triangular lattice. Rotations by θ = π/3
are illustrated by green arrows and a
translation by one lattice spacing is rep-
resented by a blue arrow.

For the sake of clarity in the subsequent discussion, let us establish
that we are interested in taking advantage of the translation and point
group symmetries of two-dimensional lattices to build a symmetrized
basis for a general Hamiltonian. We shall also assume that the system
has periodic boundary conditions. The following ideas can be gener-
alized for systems of different dimensionality. We shall use the terms
representation of a symmetry group and symmetry sector interchangeably.
Let us assume that we have a symmetry group,

G = GT ⊗ GPG, (2.27)

which is composed of the groups of translation and point group sym-
metry operations, respectively. G has Ns = NT + NPG unique ele-
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ments, where NT and NPG are the number of translation and point
group symmetries, respectively.

Each symmetry sector, `, corresponds to an irreducible representa-
tion of the symmetry group and can be labeled with a quantum num-
ber, n`. If we only consider G = GT , then this quantum number would
simply be the momentum,

k = n0k0 + n1k1, (2.28)

where ki are the two-dimensional reciprocal lattice vectors and ni are
integers. In the general case G = GT ∪ GPG, we must restrict our-
selves to the subgroup Gk

PG ⊂ GPG containing symmetry operations
that leave the momentum invariant,

The momentum operator, p̂, is the gen-
erator of translation, T̂(r) = e−ir·p̂/h̄.

gPG(k) = k. (2.29)

This concept is illustrated in Fig. 2.11. We can proceed to write the
quantum number labeling a particular symmetry sector in the general
form as n` = (k, τk), where τk is one of the irreducible representations
of the constrained point group, Gk

PG.

Figure 2.11: The square lattice has D4
symmetry with the identity (E), three ro-
tations (C4, C2

4 , C3
4) and four reflections

(σx , σy, σAC , σBD). If we consider a mo-
mentum vector k = (0, ky) with ky <
kBZ where kBZ is the value at the edge
of the Brillouin zone, then only E and σy
leave this vector invariant.

The central idea of using symmetries to ease the computational bur-
den is not to find the matrix representing the unitary transformation
of the Hamiltonian into a symmetrized, block-diagonal matrix. Rather,
we want to use the symmetry group G to construct a compact, sym-
metrized basis of states in which each smaller, block-diagonal matrix
can be written. In the case of the particle number operator earlier,
the choice of states was straightforward as each block contained only
states with a fixed number of particles (recall Fig. 2.8).

In the present case, we divide the full basis into subsets of states
that are equivalent under repeated application of the same symmetry
operation in G. In other words, a state |ri〉 in a given subset, Ri, can be
used to create all the other states {|r′〉} ∈ Ri via repeated applications
of the same symmetry operation, ĝi. This original state, |ri〉, is referred
to as the parent or representative (see Fig. 2.12). Consequently, each sub-
set can be represented by a representative (parent) state, which implies
that the number of subsets is equal to the number of parents, NR. The
choice of parent among the configurations of a given subset is arbi-
trary, but we utilize the convention that the configuration represented
by the smallest integer (when converted from a bit string) is the parent.

We will use R to refer to the set of
parents (representatives) instead of P to
avoid confusion with the group of point
group symmetries.

Note: The generative symmetry oper-
ation for a given subset, ĝi , cannot be
used to transform the states in Ri into
a state contained in another subset, Rj.
This ensures that the parents remain dis-
connected from each other.

Figure 2.12: Basis for the one-
dimensional spinless chain (L=4,
N=2, periodic boundary conditions)
divided into NR=2 subsets. In a given
subset, |ri〉 can generate the other
states via repeated application of the
translation operator (i=0, 1).

We no longer need to retain the entire basis as the set of represen-
tatives, R, can be used in conjunction with G to represent the other
configurations. We can construct general states from linear combina-
tions of the parents,

|φ〉 =
NR

∑
i=1

ci |ri〉 , (2.30)

but we will need to properly symmetrize them in order to represent
wave functions of the system.
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In order to build properly symmetrized states from R, we will also
need to use the characters, χs which detail how a configuration |r〉
transforms under the application of a general symmetry operation, ŝ,

ŝ |r〉 = χs |s(r)〉 . (2.31)

The subspace of symmetrized states can now be built from R with the
symmetrized states defined as

|ψ̃〉 = 1√
Ns

Ns

∑
s=1

ŝ |φ〉 = 1√
Ns

Ns

∑
s=1

ŝ

(
NR
∑
i=1

ci |ri〉
)

(2.32)

where the first sum is over all symmetry operations and the second
sum is over all parents. Here the general symmetry operation, ŝ, con-
tains both the translation and point group operations, {ŝ ∈ G|G =

GT ∪ GPG}. This yields a general character of the form

χs = χτk,geik·rt (2.33)

where χτk,g is the character of ĝ in the irreducible representation, τk,
of the constrained point group, Gk

PG, and rt is the vector of transla-
tion along the lattice. For a symmetry sector (labeled by `), the sym-
metrized states in Eq. (2.32) typically do not require all NR parent
configurations as will be explained next. This will enable us to reduce
the dimensions of the block diagonal matrix from NR×NR to N`×N`.

Let us now explore how this simplification of the symmetrized
states works in detail. We can exchange the order of the summations

|ψ̃〉 = 1√
Ns

NR
∑
i=1

Ns

∑
s=1

ci ŝ |ri〉 (2.34)

such that the summation over the parents (indexed by i) comes first,
followed by the summation over the various symmetry operations (in-
dexed by s). We can now break Eq. (2.34) into two terms,In other words, the summation splits as:

∑Ns
s=1 → ∑s∈εi

+∑s∈ε̄i

|ψ̃〉 = 1√
Ns

NR
∑
i=1

ci

[
∑
s∈εi

χs |ri〉+ ∑
s∈ε̄i

χs |s(ri)〉
]

, (2.35)

where εi is the set of symmetries that leave ri unchanged and ε̄i is the
set of symmetries that change ri,

εi = {s | ŝ(ri) = ri} and ε̄i = {s | s 6∈ εi}. (2.36)

We introduce another set Q` which is the set of the parent indices such

Combining these two sets gives us the
original, complete set of symmetries of
the system: Ns = |εi |+ |ε̄i |.

that the sum of the characters for the symmetries s ∈ εi is zero.

Q` =

{
i

∣∣∣∣∣ ∑
s∈εi

χs |ri〉 = 0

}
(2.37)

In other words, this is the subset of the parents where the symmetries
either have no effect or the effects completely cancel each other out.
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It is straightforward to see that the parents belonging to Q` will not
contribute to the first term of Eq. (2.35).

This set of parents will also not contribute to the second term, but
this is not immediately straightforward to see. We shall call the second
term B and write it here without the constant in the front:

B =
NR
∑
i=1

∑
s∈ε̄i

ciχs |s(ri)〉 (2.38)

This can be rewritten as

B =
NR
∑
i=1

∑
s∈ε̄i

ci ŝ |ri〉 (2.39)

=
NR
∑
i=1

∑
s∈ε̄i

ci χ∗p p̂ŝ |ri〉 (2.40)

where the last step utilizes the fact that χ∗p p̂ = 1 when p ∈ εi. We

If p ∈ εi , then p̂ |ri〉 = |ri〉. Therefore,

p̂ |ri〉 = χp |ri〉
χ∗p p̂ |ri〉 = |ri〉
=⇒ χ∗p p̂ = 1.

apply 1
|εi | ∑p∈εi

so that we now have

B =
1
|εi|

NR
∑
i=1

∑
p∈εi

∑
s∈ε̄i

ci χ∗p p̂ŝ |ri〉 (2.41)

=
1
|εi|

NR
∑
i=1

∑
p∈εi

∑
s∈ε̄i

ci ŝχ∗p p̂ |ri〉 . (2.42)

The sum over the parent indices can be split into two components,
∑NR

i=1 = ∑i∈Q`
+∑i 6∈Q`

, and we see that the first term does not con-
tribute, due to the sum over p ∈ εi. We are therefore left with

B =
1
|εi| ∑

i 6∈Q`

∑
p∈εi

∑
s∈ε̄i

ci ŝχ∗p p̂ |ri〉 (2.43)

and upon removal of the factor of 1 inserted in the form of 1 =
1
|εi | ∑p∈εi

χ∗p p̂, we are finally left with

B = ∑
i 6∈Q`

∑
s∈ε̄i

ci ŝ |ri〉 . (2.44)

Finally, we can conclude that a general symmetrized state can be rewrit- We rewrite ∑i 6∈Q`
as ∑

N`
i where N` is the

number of parents that contribute to our
symmetrized state, |ψ̃〉.ten from Eq. (2.35) as

|ψ̃〉 = 1√
Ns

N`

∑
i=1

ci

[
∑
s∈εi

χs |ri〉+ ∑
s∈ε̄i

χs |ŝ(ri)〉
]

(2.45)

=
1√
Ns

N`

∑
i=1

Ns

∑
s=1

ci ŝ |ri〉 (2.46)

where the summation over all parents, ∑NR
i=1 has now been reduced to

∑N`
i=1, with N` = NR − |Q`|. Therefore, we observe that in a given

symmetry sector, `, we only need to work with N` number of config-
urations. For the sake of simplicity, we assume that the set of parents
and the ensuing symmetrized states are properly orthonormalized and
we proceed to the discussion on the calculation of matrix elements in
the symmetrized basis for a fixed symmetry sector.

The interested reader can find more in-
formation about the orthonormalization
procedure Appendix A
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2.3.2 Calculating matrix elements

Naturally we are interested in the ground-state expectation value of
various operators, 〈

l̃
∣∣Ô
∣∣m̃
〉

, (2.47)

where we assume that the operator commutes with the Hamiltonian,
[Ô, Ĥ] = 0. We must consider how a general operator Ô acts on our
symmetrized states. Recall that the parents form the basis for these
symmetrized states which are defined asWe use |l〉 to indicate an unsymmetrized

state and
∣∣l̃
〉

a symmetrized state.
∣∣l̃
〉
=

Ns

∑
s=1

ŝ

(
N`

∑
j=1

µ`l j
∣∣rj
〉
)

(2.48)

where µ`l j is a matrix that arises from the orthonormalization of the
states (see Appendix A) and ` indicates the symmetry sector. In orderWe assume that the factors of 1√

Ns
are

included in the mixing matrix. to compute the matrix elements, we establish that every parent is con-
nected via the operator, Ô, to a set of configurations with an associated
weight that depends on the form of the given operator,

{
|ck〉

}
k=1,...,Nc

with weights
{

αk

}
k=1,...,Nc

. (2.49)

The states generated from the parent configurations via symmetry op-
erations are referred to as children. Therefore, each configuration,

∣∣ci
k
〉
,

that arises from the action of Ô on a parent is then either a parent itself
or it is connected to its own respective parent

|ri〉 ŝ−→
∣∣∣ci

k

〉
(2.50)

via a symmetry operation, ŝ. Here the superscript i labels which con-
figuration |ri〉 is the parent of

∣∣ci
k
〉
. We begin by writing out the full

The derivation of the mixing matrix, µ`ij,
is provided in Appendix A.

expression for the matrix elements,

〈
l̃
∣∣Ô
∣∣m̃
〉
=

N`

∑
i,j=1

Ns

∑
p,s=1

µ`∗jl µ`mi
〈
rj
∣∣ p̂† Ô ŝ

∣∣ri
〉

. (2.51)

We shall assume that R = {|ri〉} forms an orthogonal basis, which
allows us to rewrite Eq. (2.51) with the expressions for the mixing
matrix elements as

〈
l̃
∣∣Ô
∣∣m̃
〉
=

N`

∑
i,j=1

Ns

∑
p,s=1

δjl√
deg(rl)

δmi√
deg(rm)

〈
rj
∣∣ p̂† Ô ŝ

∣∣ri
〉

(2.52)

where deg(rl) is the degeneracy of the parent |rl〉, defined as

deg(rl) = ∑
s∈εl

χs(rl). (2.53)

Via the delta functions, we reduce the two summations over all of the
parents to obtain:

〈
l̃
∣∣Ô
∣∣m̃
〉
=

Ns

∑
p,s=1

1√
deg(rl)

1√
deg(rm)

〈rl | p̂† Ô ŝ|rm〉 . (2.54)
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We proceed by combining the two symmetry elements p̂† and ŝ into
one element q̂ by the group multiplication property,

〈
l̃
∣∣Ô
∣∣m̃
〉
=

Ns

∑
q=1

1√
deg(rl)

1√
deg(rm)

〈rl |q̂ Ô|rm〉 . (2.55)

Finally we act the observable of interest on |rm〉 to arrive at the follow-
ing expression:

〈
l̃
∣∣Ô
∣∣m̃
〉
=

Nc

∑
k=1

Ns

∑
q=1

αk√
deg(rl)deg(rm)

〈
rl

∣∣∣q̂
∣∣∣ci

k

〉
. (2.56)

We recall the connection between children and parents from Eq. (2.50),
which allows us to rewrite Eq. (2.56) as

〈
l̃
∣∣Ô
∣∣m̃
〉
=

Nc

∑
k=1

N`

∑
i=1

Ns

∑
r,q=1

αk√
deg(rl)deg(rm)

χ−1
r 〈rl |q̂ r̂|ri〉 (2.57)

=
Nc

∑
k=1

N`

∑
i=1

Ns

∑
s=1

αk√
deg(rl)deg(rm)

χ−1
r 〈rl |ŝ|ri〉 . (2.58)

As the parents should not be connected to one another via a symmetry

Here we use again the multiplicative
property of the symmetry group, r̂ q̂ = ŝ
with ŝ ∈ G.

operation, we realize that we will only have non-zero contributions
when |ri〉 = |rl〉. This requires a restriction of our summations to a
sum over the children whose parents are |rl〉 (∑k∗ ) and a sum over the
symmetries, s ∈ εl , which leave |rl〉 unchanged.

〈
l̃
∣∣Ô
∣∣m̃
〉
=

Nc

∑
k∗

∑
s∈εl

αk√
deg(rl)deg(rm)

χ−1
r 〈rl |ŝ|ri〉 (2.59)

=
Nc

∑
k∗

∑
s∈εl

αk√
deg(rl)deg(rm)

χ−1
r χs (2.60)

=
Nc

∑
k∗

αkχ−1
r

√
deg(rl)

deg(rm)
(2.61)

We finally arrive at an expression for the calculation of generic matrix
elements given an orthonormal basis of parent configurations by use
of Eq. 2.53. This expression is relatively straightforward and simply
requires knowledge of the degeneracies, characters and naturally the
weights of the observable. More details are presented in Appendix A.

Overall, incorporating the use of translation and point group sym-
metries into our exact diagonalization code enables us to further re-
duce the size of the matrices that need to be diagonalized. However,
this implementation is highly tedious and requires careful attention
to detail. This general method can be employed for any Hamiltoni-
ans containing discrete translation and/or point group symmetries.
We have employed the discrete lattice symmetries to perform finite
size checks between systems with Ns = 12, 18, and 24 sites to ver-
ify that our results do not change drastically with size and hence, are
representative of the thermodynamic limit. For the remainder of the
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chapter, we shall focus on numerical techniques that are more spe-
cific to our models of interest. In particular, we shall discuss twisted
boundary conditions which serve to minimize finite-size errors in the
kinetic terms of a Hamiltonian. Following this, we will cover briefly
the Ewald summation which allows us to perform controlled calcula-
tions of long-ranged potentials.

2.4 Twisted boundary conditions

In the following section we will detail the use of twisted boundary
conditions (TBCs) in finite-size ED calculations to minimize finite-size
errors arising from the kinetic portion of the Hamiltonian [144, 145].
The kinetic terms in all of the models studied as part of this Hamilto-
nian are of the form

−t ∑
〈ij〉,σ

(
c†

iσcjσ + h.c.
)

(2.62)

where the hopping matrix amplitude t is assumed to be the same along
all nearest-neighbor links in a lattice unless explicitly stated otherwise.
We assume that the electrons are localized to the ionic sites i that com-
prise the lattice and that the overlap between electronic wave functions
on different sites falls off exponentially with distance. Therefore, we
restrict the possible hopping processes to occur between nearest neigh-
bors, as denoted by the summation over 〈ij〉.

Figure 2.13: Illustration of twist intro-
duced in the periodic boundary condi-
tions of a one-dimensional chain.

As the name implies, twisted boundary conditions amount to in-
cluding a twist in the boundary conditions, as depicted in Fig. 2.13.
The use of TBCs was initially more common in particle physics and
eventually gained traction in condensed matter physics through the
quantum Monte Carlo community. There are two different, but equiv-
alent, manners in which to visualize TBCs:

1. as a twist included on the periodic link between the two end sites
of the lattice, or

2. as a twist included on each nearest-neighbor link.

After briefly introducing TBCs and their connection to the well-known
Aharonov-Bohm effect, we shall discuss the various prescriptions used
to implement TBCs in ED calculations and the sensitivity of different
observables to the boundary conditions.

2.4.1 Flux and Aharonov-Bohm effect

Figure 2.14: Illustration of insertion of
flux along two directions of a torus.

Formally speaking, TBCs amount to a modification of the hopping
terms of the Hamiltonian by a Peierls phase,

tĉ†
i ĉj → eiδ·κtĉ†

i ĉj, (2.63)

where δ is the distance between sites i and j, which are typically re-
stricted to nearest-neighbor sites. The other component of the phase,
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κ, can be thought of as a flux inserted along the unit directions of the
finite cluster under consideration (see Appendix A for more details).
In the case of a two-dimensional periodic lattice, which is geometri-
cally equivalent to a torus, the flux can be inserted along the two unit
directions as

κ = 2π

[
ϕx

Lx
x̂ +

ϕy

Ly
ŷ

]
, (2.64)

which can be seen in Fig. 2.14. Periodic boundary conditions corre-
spond to κ = 0, or equivalently (ϕx, ϕy) = (0, 0), whereas anti-periodic
boundary conditions correspond to (ϕx, ϕy) = (0.5, 0.5). From this
flux κ, we can define a vector potential, A = κ/2π such that the phase
factors can be expressed as

eiδ·κ = e2πi
∫ i±δ

i A·d` (2.65)

in the hopping term of the Hamiltonian of interest. It is important
For details on the calculation of the
phase factor for a finite size cluster with
a fixed lattice geometry, see Appendix A.

to note that the presence of a vector potential (A 6= 0) does not sig-
nify that we have modified our original Hamiltonian by introducing a
magnetic field, B. In fact, as we know from the Aharonov-Bohm effect,
quantum mechanical particles can acquire a phase difference as they
travel along different paths in a region with B = 0. The acquisition
of the phase factor is then due solely to the vector potential, and not
to any underlying magnetic interaction terms. Therefore, we are free
to employ TBCs in numerical calculations of finite-size systems to im-
prove our estimates of the system’s behavior in the thermodynamic
limit. However, the implementation of TBCs in such calculations is
not straightforward and requires some care as will be discussed in the
following section.

The Aharonov-Bohm effect was actually
discovered a decade before Aharonov
and Bohm by Ref. [146].

2.4.2 Implementation of twisted boundary conditions
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Figure 2.15: Effect of twisted boundary
conditions on the energy per site, ε(n),
for various fillings n of the 1d Hubbard
chain with Ns = 8 sites and U/t = 8.

In this section, we shall discuss both the benefits and the caveats of
using TBCs in numerical calculations of strongly correlated systems.
For the sake of simplicity, we will use the one-dimensional Hubbard
model,

H = −t ∑
〈ij〉,σ

(
c†

iσcjσ + h.c.) + U
Ns

∑
i=1

ni↑ni↓, (2.66)

with fixed filling (canonical) where necessary to demonstrate various
concepts. The flux introduced above is appropriately reduced to

κ = 2π
ϕx

Lx
x̂ (2.67)

along the one-dimensional chain, where Lx is the length of the chain.
In most cases, the ground state is highly sensitive to the choice of
boundary condition, as shown in Fig. 2.15. With such strong depen-
dence of the results upon the boundary condition, we cannot safely
argue that periodic boundary conditions are necessarily a better choice
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Figure 2.16: Flux energy level crossings
as the flux is applied to the Hubbard
model on the one-dimensional chain
with Ns = 6 sites, U/t = 8 and n = 0.25.
The lowest 40 eigenvalues are plotted as
a function of ϕx . The energies of the
ground state and excited states are all im-
pacted by the choice of boundary condi-
tion.
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than any other single boundary choice, such as anti-periodic boundary
conditions.

As can be seen in Fig. 2.15, the flux dependence of the ground state
energy is periodic in ϕx, leading to what resembles energy bands in
flux space (instead of momentum space). In numerical calculations of
strongly correlated systems, TBCs serve to minimize degeneracy ef-
fects because the application of flux along the unit directions of the
lattice can split the multiply degenerate ground states that are fre-
quently found at periodic boundary conditions [147]. The splitting of
the various energy levels via application of ϕx is shown in Fig. 2.16.
We emphasize that the application of a flux impacts all energy levels,
and not merely the ground state level.

With our finite-size calculations, we are interested in computing
quantities that can accurately be used to predict behavior in the ther-
modynamic limit. As such, we must determine a prescription for
the boundary conditions that will yield consistent and accurate re-
sults. As a simplistic, first attempt, we could choose to impose one,
fixed boundary condition for all calculations. This is typically done
in finite-size calculations that work exclusively in periodic or anti-
periodic boundary conditions, for example. However, as Fig. 2.15 and
Fig. 2.16 demonstrate, fixing one choice of boundary condition does
not yield consistent results and can potentially miss information con-
tained in degenerate states that are accessible instead at other bound-
ary conditions.
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Another straightforward choice would be to run the ED calcula-
tions over a grid of flux points,

{
ϕi ∈ [0, 1)

}
, and to select the ϕi

corresponding to the absolute minimal energy as the boundary condi-
tion of choice [148]. These two different prescriptions are presented in
Fig. 2.17, where we can observe that the choice of prescription changes
the results in an unpredictable manner as a function of the filling,
n. While these two prescriptions (fixed and absolute minimum) are
straightforward to implement, there is no guarantee that either should
consistently yield an accurate result across all parameters being con-
sidered (filling, disorder, interaction strength, etc.). Furthermore, for
higher dimensions, there are more arbitrary choices of boundary con-
dition, such as (ϕx, ϕy) = (0, 0.5) or (ϕx, ϕy) = (0.5, 0.5), that again
are not guaranteed to consistently yield an accurate result. 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2.17: Different prescriptions of
boundary condition on the energy per
site, ε(n), for 1d Hubbard model on
chain with Ns = 6 sites. Calcu-
lations with a fixed boundary condi-
tion are shown for the periodic case
(blue squares) and anti-periodic case
(dark blue triangles). Calculations using
the absolute minimum prescription are
shown in green.

0.2 0.4 0.6 0.8

n

10−3

10−2

10−1

∆
E

C
(n

)

Nϕ

4

8

10

20

100

Figure 2.18: Convergence of the canon-
ical ground state energy with the num-
ber of flux points, Nϕ, for the non-
interacting tight-binding model of spin-
less particles on the 1d chain (Ns = 12).

However, it has been shown that averaging instead over a grid of
boundary conditions yields an accurate and consistent result [145].
More specifically, this procedure recovers the non-interacting, thermo-
dynamic limit of the Hubbard model through grand canonical calcu-
lations on a finite lattice and an average over boundary conditions. In
this approach, the basis of states is not reduced by a restriction on the
number of particles. Instead, the grand canonical ground state energy
on the chain is computed as

EGC(µ) =
1
L

∫ 1

0
dϕx

Nx

∑
mx

(
ε
(
k− µ

)
θ
(
µ− ε(k)

))
(2.68)

where ε(k− µ) is the energy dispersion, µ is the chemical potential,
and θ(ε) is the Heavyside step function. The discrete momenta are
those obtained from the discrete lattice sites that have been shifted by
the boundary conditions,

kx =
2π(mx + ϕx)

Lx
with mx = 0, . . . , Lx − 1. (2.69)

The total number of flux points is defined as Nϕ. The canonical ground
state energy is determined by the Legendre transform,

EC = sup
µ

(
EGC(µ)− µ

)
(2.70)

and converges quickly with Nϕ, as shown in Fig. 2.18 for the non-
interacting limit.

Fig. 2.19 demonstrates that the boundary condition averaging in the
grand canonical ensemble recovers the parabolic dependence of the
ground state energy upon the filling for a reasonable Nϕ. The numer-
ical cost is linear in Nϕ. Thus far, the grand canonical integration (or
averaging) technique from Ref. [145] appears to be a promising avenue
for the implementation of TBCs in finite-size ED calculations. In par-
ticular, this method ensures that gap-dependent quantities (or observ-
ables not computed in a fixed particle sector) are rigorously defined.
However, the use of the full grand canonical ensemble is less than ideal
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because it requires that we store the number of states corresponding
to all particle number sectors.

In Chapter 3, we shall be interested in computing the single-particle
spectral function, A(ω), which depends on an accurate determination
of the chemical potential, µ, in order to identify gaps and pseudogaps
in its spectral structure. If we restrict our calculations to the two neigh-
boring sectors to the filling of interest, then we observe in Fig. 2.19 that
the reduced approach also reproduces the correct energy dependence
of the free electron model. This reproduction upon reduction of the
computed fillings is also observed for the case when a gap, ∆, has
been introduced into the energy dispersion in the nearly free electron
model. In fact, this reductive approach corresponds with the prescrip-
tion detailed in Ref. [149], where the charge gap is defined as

∆ch = max(µ+ − µ−, 0) (2.71)

where

µ+ =
1
2

min
ϕ

(
EN+1

0 (ϕ)− EN
0 (ϕ)

)
(2.72)

µ− =
1
2

max
ϕ

(
EN

0 (ϕ)− EN−1
0 (ϕ)

)
(2.73)

The estimation of the charge gap for the full, grand canonical scheme
and the reduced scheme around n = 0.5 are shown in Fig. 2.20. This
use of TBCs to determine gaps and gap-dependent quantities intu-
itively makes sense as a gap is defined from extremal points along an
energy band, as opposed to an average value in the band [149]. While
the grand canonical (or reduced grand canonical) averaging procedure
is necessary for gap-dependent quantities, Ref. [144] demonstrated
that averaging over boundary conditions in the canonical ensemble
is sufficient to obtain accurate results with a sufficiently fine grid of
flux points. In summary, for the quantities computed via ED calcula-
tions in this thesis, we apply TBCs either via the canonical averaging
technique (for non-gap dependent quantities) or via the reduced grand
canonical procedure (for gap-dependent quantities).
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Figure 2.19: Canonical ground state en-
ergy, EC(n), for the free electron in d = 1
(black). The parabolic energy depen-
dence on filling is recovered from cal-
culations with the full, grand canoni-
cal scheme, as well as for the reduced
scheme with the number of particles re-
stricted to Ns

2 − 1 ≤ Np ≤ Ns
2 + 1.

The reduced scheme similarly recovers
the energy from the full scheme for the
nearly free electron model with a gap
∆ = 1. Here Ns = 8 and Nϕ = 10.
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Figure 2.20: Determination of the charge
gap from the nearly free electron model
on the 1d chain with Ns = 8 and Nϕ =
100. Results are displayed for the full,
grand canonical scheme and the reduced
scheme.

TBCs additionally provide us with access to denser, or more contin-
uous, spectra when we are interested in computing dynamic quanti-
ties. One such example is the optical conductivity, defined as

σ(ω) =
π

vol ∑
n=1

| 〈ψn| Ĵ|ψ0〉 |2
ω

δ
(
ω− (En − E0)

)
(2.74)

where vol is the volume of the system, ψn is the n-th excited state, ψ0 is
the ground state, and Ĵ is the current operator. As Fig. 2.21, increasing
the number of sampled flux points increases the density of the spec-
trum. The spectral density rapidly increases with Nϕ (raw data, left
panel) and the filtered results (right panel) appear essentially identi-
cal with Nϕ ≥ 4. We note that the results presented in Fig. 2.21 were
obtained from a one-dimensional model with long-range interactions
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Figure 2.21: Optical conductivity for a
d = 1 chain of spinless particles with
long-range interactions (model to be dis-
cussed in Chapter 3) with V/t = 10 as
a function of Nϕ. Left panel (histogram
with bin width δω = 0.005) shows that
increasing Nϕ (green to blue color gradi-
ent) enables sampling of more values of
ω, leading to a more continuous spec-
trum. Right panel (Gaussian filtered
with broadening δ = 0.05t) demon-
strates the convergence of σ(ω) with Nϕ.

(similar to that in Chapter 3). The purpose of this figure is merely to
demonstrate the capability of TBCs to sample more energy values than
are accessible with periodic boundary conditions.

While the exact diagonalization study in this thesis was conducted
at T = 0K, these methods can be further extended to analyze systems
at finite temperature. Notably, the finite temperature Lanczos method
(FTLM), developed by Ref. [150], computes both static and dynamical
quantities through an averaging over randomly sampled states,

〈A〉 = Nst

ZR

R

∑
r=1

M

∑
j=0

e−βεr
j
〈

r
∣∣∣ψr

j

〉 〈
ψr

j

∣∣∣A
∣∣∣r
〉

, (2.75)

where |r〉 are the randomly sampled states that are used as initial vec-
tors in the Lanczos algorithm. Nst is the number of states in the Hilbert

space and εr
j ,
∣∣∣ψr

j

〉
are the eigenvalues and eigenvectors obtained from

each Lanczos run (of which there are M). The partition function is
defined as

Z =
Nst

R

R

∑
r=1

M

∑
j=0

e−βεr
j
∣∣∣
〈

r
∣∣∣ψr

j

〉 ∣∣∣
2
. (2.76)

This sampling scheme over random states is only employed at high
temperatures and the T = 0K result can be recovered upon generaliza-
tion of Eq. (2.76).

Thus far, we have seen that the application of TBCs can lift degen-
eracies and that the averaging technique provides a controlled method
for obtaining well-converged results for (gap-independent) observables.
We have also discussed how to accurately define gaps within the frame-
work of TBCs. Additionally, TBCs improve the smoothness of spectral
quantities by enabling access to a denser (more continuous) measure-
ment, thereby mimicking larger cluster sizes (see Fig 2.21). Finally, we
can also use TBCs to access momentum vectors throughout the Bril-
louin zone, as was hinted at in Eq. (2.69). For instance, this will allow
us to compute the momentum distribution function, nk = 〈ψ0|n̂k|ψ0〉,
along paths in momentum space in a quasi-continuous manner where
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the precision of the path is directly linked to the number of flux points.
This gives access in particular to the quasiparticle weight, Z, which is
defined as the jump in nk at the Fermi wave vector. On the other
hand, observables such as the density correlation in reciprocal space,
C(q) = 〈ψ0|ρ̂qρ̂−q|ψ0〉, cannot be extended to the entire Brillouin
zone, but we can still employ TBCs to obtain decent averages over
a fine grid of flux points. Overall, TBCs can greatly improve the accu-
racy of finite-size ED calculations by providing a controlled, rigorous
manner in which to minimize errors resulting from the kinetic term of
the Hamiltonian under study.

2.5 Ewald summation

The use of TBCs is intended to cure errors stemming solely from the
kinetic portion of the Hamiltonian as it amounts to a modification of
the hopping terms by a phase factor. However, they do not reduce er-
rors arising from the interaction, or potential, part of the Hamiltonian.
In particular, the work conducted in this thesis focuses on long-range
interacting models which can be generally written as

H = −
Ns

∑
〈ij〉

t(ĉ†
i ĉj + ĉ†

j ĉi) +
V
2

Ns

∑
ij,

i 6=j

(n̂i − n̄)(n̂j − n̄)∣∣∣~Ri − ~Rj

∣∣∣
α (2.77)

where t is the hopping amplitude, and c†
i and ci are creation and anni-

hilation operators, respectively. This particular Hamiltonian is written
for spinless particles, but it can easily be generalized to include spin.
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Figure 2.22: Illustration of power law in-
teractions for α = 1, 3, 8, 32.

The second term describes the electrostatic interactions between the
particles and consists of a double summation over all pairs of sites, i
and j, excluding the pairs forbidden by the Pauli exclusion principle
(i = j) . The electrostatic interaction between two sites depends on
the product of the electric charge on each site, which is equivalent to
(n̂i − n̄)(n̂j − n̄) in Eq. (2.77). The average density, n̄, is subtracted to
ensure charge neutrality in our finite-size calculations. The interaction
also depends on the inverse distance between the two sites, ~R−α

ij , and
the range of the interaction is controlled by the parameter α (illustrated
in Fig. 2.22). The case of pure Coulomb interactions occurs for α = 1,
whereas the case of dipolar interactions occurs at α = 3. The larger
the value of α, the shorter the range of the interactions. Finally, the
prefactor, V/2, contains the interaction strength at one lattice spacing,
V, and a factor of 1/2 to account for double counting of pairs in the
summation.

As we are restricted to finite-sized systems for our calculations, we
must find a method to accurately represent the thermodynamic limit
of this electrostatic interaction. To begin, we consider that our finite
cluster is infinitely repeated (via periodic boundary conditions) in or-
der to mimic the thermodynamic limit (see Fig. 2.24). Now we can
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Figure 2.23: Illustration of the split-
ting of charge distributions in the Ewald
summation technique.

consider the electrostatic potential to be

Uα =
1
2 ∑

R

′∑
ij

V(n̂i − n̄)(n̂j − n̄)∣∣rij + R
∣∣α (2.78)

where R is the vector that translates a site j to its image in one of the
replicas. However, this summation is conditionally convergent and
the final result depends upon the order in which one sums over the
replicas [151]. Furthermore, even when the correct order is chosen, the
convergence is very slow. Thankfully this problem was resolved with
the development of the Ewald summation technique, which rewrites
the potential into two terms–one that converges rapidly in real space,
and the other that converges rapidly in momentum space. The general
idea of the Ewald summation is to rewrite the original point charge
distribution as a summation of said distribution plus two Gaussian-
smeared charge distributions that cancel each other out,

ρch(r) = ρch(r) + ρε(r)− ρk
ε (r), (2.79)

where ε is a smearing (cutoff) parameter associated with the Gaussian
distributions. The k superscript on the last term indicates that this
term undergoes a Fourier transform to reciprocal (momentum) space.
This idea is schematically represented in Fig. 2.23. The two terms in
real space are combined into one, rapidly converging term and the sum
in reciprocal space also converges rapidly. Included in the calculation
is also a correction term that accounts for the inclusion of self-energy
from the replicated clusters.

Figure 2.24: Illustration of replicas of
the finite cluster to mimic the thermody-
namic limit. Although only the nearest-
neighbor clusters are shown for illustra-
tive purposes, we consider many more
replicas when computing the Ewald
summation.

The complete derivation for the Ewald summation in arbitrary di-
mension and for arbitrary interaction range α is provided in Appendix B.
The final result is provided here:

Uα =
1

2Γ(α/2) ∑
R

′∑
ij

Vij∣∣rij + R
∣∣α Γ
(

α/2, ε2 ∣∣rij + R
∣∣2
)

+
πd/2vol−1

2α−d+1Γ(α/2) ∑
k 6=0

∑
ij
|k|α−d Γ

(
d− α

2
,
|k|2
4ε2

)
cos (k · rij)

+
πd/2vol−1

Γ(α/2)
εα−d

(α− d) ∑
ij

Vij −∑
i

Viiε
α

α
.

where we have defined Vij = V(n̂i − n̄)(n̂j − n̄) for the sake of simplic-
ity. This technique can be implemented in a straightforward manner
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for general lattice geometries and dimensions and converges rapidly
with the number of replicas. Typically only a few replicas (NR ∼
5 − 10) are required to reach well-converged results. In conclusion,
the Ewald summation enables us to compute electrostatic potentials
that are representative of the thermodynamic limit for the finite-size
configurations used in ED calculations.

2.6 Summary

The current chapter has served as a technical introduction and has
introduced exact diagonalization as a versatile numerical technique
with which to study strongly correlated systems, a necessary quality
for our investigations. We have explained a sampling of the technical
details of this method that we have deemed relevant. Among these
details, we have reviewed the framework for representations of a gen-
eral Hamiltonian and its efficient implementation in a diagonalization
code, while providing estimates for finite sizes accessible. Further-
more, we have discussed at length the Lanczos algorithm which is
utilized to diagonalize large, sparse Hermitian matrices such that the
extremal eigenpairs are rapidly obtained. We have also reviewed the
use of symmetries in diagonalization codes as an effort to increase the
accessible sizes.

Finally, we discussed strategies to reduce finite-size errors in both
the kinetic and the interacting portions of the Hamiltonian. The errors
stemming from the kinetic terms can be minimized by the implemen-
tation of twisted boundary conditions. This implementation contains
many subtleties and we have summarized the various approaches and
laid out an optimal strategy for our future work. The errors arising
from the computation of a long-ranged potential are handled with the
Ewald summation. In conclusion, this wealth of technical knowledge
places us in an ideal position from which to investigate the effects of
long-range interactions at zero temperature which will be examined in
the following chapter by means of exact diagonalization.
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3.1 Introduction

Sir Nevill Mott changed the landscape of condensed matter physics
in 1949 by explaining that strong interaction effects would split con-
duction bands into one empty band and one filled band at half-filling
(n = 1) [11]. This observation correctly explained the insulating nature
of narrow band systems, such as transition metal oxides, where sim-
ple band theory erroneously predicted these materials to be metallic.
An interaction-centered treatment of electrons came to be understood
as the critical mechanism behind the Mott metal-insulator transition
(MIT) and enabled condensed matter physicists to begin to understand
interaction effects in other correlated materials.

Shortly thereafter, John Hubbard derived the simple Hubbard model
to study the Mott MIT [17]. This model assumes that only an on-site
energy term, U, is sufficient to explain the physics of the electron-
electron interactions in narrow band systems,

H = −∑
ij,σ

tij(ĉ†
iσ ĉjσ + h.c.) + U

N

∑
i=1

n̂i↑n̂i↓ − µ
Ns

∑
i=1

n̂i. (3.1)

but exact, analytical solutions are limited [19]. This dearth therefore
drove the development of several sophisticated numerical techniques
over the course of the past fifty years, including dynamical mean field
theory [20], quantum Monte Carlo [29, 30], and exact diagonaliza-
tion [32,33,132]. The discovery of the high-temperature cuprate super-
conductors [83] and attempts to explain the exotic correlated phases
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in their phase diagrams also helped to fuel the explosion of numerical
and theoretical works on the Hubbard model [48]. This model on the
square lattice serves as the preferred model for electronic correlation
in these systems [43, 88].

However, despite the rigorous application of state-of-the-art tech-
niques to the Hubbard model, several phenomena remain unexplained,
including the nature of ordering patterns in the cuprates and the source
of bad metallic transport observed across a broad class of materi-
als [74, 88]. Indeed, these shortcomings suggest that the Hubbard
model lacks certain ingredients to properly describe strongly corre-
lated materials. Furthermore, the wide variety of materials that dis-
play these novel phenomena indicates that the missing ingredient(s)
should be general in nature. As many of these systems host exotic
phases in the vicinity of Mott insulators, a potential candidate could
be linked to the incipient breakdown of screening of electric charges.
With reduced screening, the impact of long-range interactions would
play an important role in determining the resulting physics.

In classical systems, long-range interactions have been shown to
produce strong frustration effects which lead to unusual charge states,
including charge glasses [110] and pseudogap phases with strong short-
range order [152]. Experimentally, manifestations of strong non-local
interactions have been discovered in the θ-(BEDT-TTF)2X family of
organic conductors [59], which host charge glass and strange metal
phases in geometrically frustrated lattices, as previously discussed in
Sec. 1.4.2. These materials consist of layers of organic molecules laid
out in a triangular lattice structure, intercalated with insulating, an-
ionic layers that enable the organic layers to be studied as quasi-two-
dimensional systems. These clean materials could act as an ideal ex-
perimental platform to investigate anomalous phenomena beyond the
conventional Mott-Hubbard physics.

Overall, the need to understand if extensions to the Hubbard model
can adequately address the open questions in strongly correlated ma-
terials motivates us to study the effect of long-range interactions on
the zero-temperature ground state of a two-dimensional lattice. Our
particular choice of lattice is motivated by the experimental findings in
the θ-(BEDT-TTF)2X salts. In this chapter, we first introduce our long-
range model and discuss relevant technical details. We then proceed to
an explanation of the phase diagram and a characterization of each of
the phases contained therewithin. We discover that the long-range in-
teractions act as a novel mechanism for producing strongly correlated
behavior and provide an understanding for this mechanism in the con-
text of disordered insulators. Finally, we conclude with an analysis of
the role of charge fluctuations in the correlated metallic phase and
consider the impact of these fluctuations on transport at finite temper-
atures. Many of these results have been published in Ref. [153].
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3.2 Model and method

The family of organic materials mentioned in the previous section are
considered quasi-two-dimensional materials because of their insulat-
ing anionic layers. As such, we consider a two-dimensional triangular
lattice model with non-local interactions that will reasonably describe
the physics present in these materials. Furthermore, the layer of or-
ganic molecules is quarter-filled (n = 0.5) in terms of holes. By the use
of particle-hole symmetry, we choose to study a model that is quarter-
filled in terms of electrons. Moreover, as discussed in Chapter 1, we
would not reasonably expect any doubly occupied sites at low temper-
atures based upon estimates of the ratio between the on-site energy, U,
and the non-local potential, V. This expectation that the magnetic
channel will not play a significant role in the physics, coupled with
the fact that we are mostly interested in the charge degrees of free-
dom, permits us to focus our efforts on a spinless model. This model
has an average density of one particle every two sites, respecting the
original density of the holes.

Figure 3.1: Illustration of the long-range
model of spinless particles.

While these justifications might appear to be highly material-de-
pendent, we would like to emphasize that the general understanding
of long-range interactions in a spinless model at T = 0K remains the
main focus of our study. The family of organic materials acts as the
physical justification for investigating such a model and provides us
with a starting point in terms of lattice type and filling. However,
our model can easily be adapted to apply to studies of the various
systems discussed in Chapter 1. We study spinless electrons interact-
ing through a long-range repulsive potential on an isotropic triangular
lattice as described by the following Hamiltonian [152],

H = −t
Ns

∑
〈ij〉

(ĉ†
i ĉj + h.c.) +

1
2

Ns

∑
ij

Vee(Rij, α)(n̂i − n̄)(n̂j − n̄). (3.2)

Here ĉ†
i and ĉi are creation and annihilation operators for electrons

in local atomic orbitals, h.c. is the Hermitian conjugate, n̂i is the lo-
cal density operator, t is the hopping matrix element between nearest
neighbor sites, and n̄ = 0.5 is the average electron density which is
subtracted in the second term to enforce charge neutrality. The po-
tential, Vee(Rij, α), describes the interaction between two electrons at a
distance Rij from each other,

Vee(Rij, α) = V ·
(

a
Rij

)α

, (3.3)

where the power-law exponent α controls the range of interactions.
The strength of the interactions is controlled by V, the value of the
potential at one lattice spacing a (which we set as the unit length).
This particular form of Vee(Rij, α) includes:

• the pure Coulomb potential, Vee(R) ∼ 1/R with α = 1,
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Figure 3.2: Sketch of cluster defini-
tions for Ns = 12, 18 and 24 sites com-
plete with the cluster translation vectors
(blue arrows) and the hopping lattice
directions (green arrows) with respect
to those of the organic salts, θ-(BEDT-
TTF)2X. The hopping processes occur
between nearest-neighbor sites, but the
green arrows indicating them have been
enlarged for ease of reading.

• the nearest-neighbor interaction, Vee(R) ∼ ∑〈ij〉 n̂in̂j with α = ∞,
which has been previously been studied in the extended Hubbard
model [154],

• and the dipolar form Vee(R) ∼ 1/R3 of the two-dimensional elec-
tron gas near a metallic gate (α = 3) [155, 156].

Eq. (3.2) is solved numerically via both brute-force and Lanczos ex-
act diagonalization at zero temperature on finite-size clusters with
Ns = 12, 18, 24 sites. When the Hilbert space of the system is suf-
ficiently small, the Hamiltonian is diagonalized via brute-force exact
diagonalization. Otherwise, the Lanczos algorithm is employed as dis-
cussed in Chapter 2.

Figure 3.3: Brillouin zone corresponding
to the triangular lattice. The dotted lines
are the paths along which the occupation
number 〈n̂k〉 is calculated for the deter-
mination of the quasiparticle renormal-
ization Z.

The finite size clusters are shown in Fig. 3.2. The hopping and
interaction terms along the different bond directions are taken to be
isotropic (i.e., tc=tp=t and Vc=Vp=V). The linear size is defined as L
and the translation vectors, T1 and T2, for each cluster are given as
follows:

• Ns =12: T1=(L, L), T2=(−L, 2L) with L = 2

• Ns =18: T1=(L, 0), T2=(0, L/2) with L = 6

• Ns =24: T1=(L, 0), T2=(0, 2L/3) with L = 6

• Ns =24: T1=(L, L), T2=(−L, L/2) with L = 4.

The hexagonal Brillouin zone corresponding to the isotropic triangular
lattice is shown in Fig. 3.3. The Ns sites in each real space cluster
correspond to Ns discrete momenta in the Brillouin zone. The specific
geometries of the clusters in real space are chosen such that we do not
bias the ED calculations to exclude certain charge-ordering patterns,
namely stripe order (M point) and three-fold order (K point). The
locations of these high-symmetry points are highlighted in Fig. 3.3.
The only exception is that of the parallelogram cluster with Ns = 24
sites as the set of momenta from this cluster does not include the K
point. However, this does not impact our results and will be discussed
in more detail later, along with the relevance of the wave vector to
charge order (see Sec. 3.4).
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As described in Chapter 2, we applied translation symmetries to re-
duce the computational cost and to minimize any spurious effects of
degenerate ground states [140]. The use of these symmetries reduces
the size of the Hilbert space in a given symmetry sector by a factor
approximately equal to the number of symmetries, NH → NH/Nsym. For more information on the implemen-

tation and benefits of TBCs, please refer
to Chapter 2 and Appendix A.

We also applied twisted boundary conditions (TBCs) to improve dis-
cretization errors arising from the kinetic term in the Hamiltonian
(Eq. 3.2) and to lift the degeneracy of the ground state. We averaged
over TBCs at fixed particle number for non-gap-dependent quanti-
ties [144], and we averaged over the (reduced) grand canonical scheme
for gap-dependent quantities [145]. This restores the exact thermody-
namic limit (Ns → ∞) result in the non-interacting limit, V/t → 0,
and lets us reasonably expect a better approximation when V/t 6= 0.

The vector potential is related to the flux
inserted along the torus by A = κ/2π

with κ = 2π
(

ϕx
Lx

x + ϕy
Ly

y
)

.

TBCs essentially modify the hopping terms of our Hamiltonian such
that when a particle hops between nearest-neighbor sites, it picks up a
phase from the flux (boundary condition) applied. We can define the
phase acquired along a given direction by an angle θi that is written in
terms of a vector potential, A, as

θi = 2πξi =
2π

φ0

∮ (
A1û1 + A2û2

)
· d~l, (3.4)

where ûi corresponds to the unit lattice translation vector along the
i-th direction of the torus. The prefactor, 2π/φ0, corresponds to a con-
stant factor 2πq/hc, where we set φ0 = hc/q = 1. We introduced a

The prefactor arises from the expression
of the Lorenz force in c.g.s. units

F = q
(

E +
v
c
× B

)
(3.5)

where q is the charge of the particle, c is
the speed of light, v is the speed of the
particle, and E and B are the electric and
magnetic fields, respectively.

small, random shift to the TBCs, designated by η, in order to lift the
degeneracy in the vicinity of the periodic boundary (and other highly
degenerate) condition(s) such that diagonalization via the Lanczos al-
gorithm could be employed. More details on TBCs can be found in This shift was typically taken to be

η=(1.07654× 10−4,−1.98673× 10−4).Chapter 2 and details on the calculation of this phase factor, θi, can be
found in Appendix A.

For the non-local electrostatic interaction term, we extended the fi-
nite size cluster to the thermodynamic limit by considering infinitely
repeated simulation cells and then performing the electrostatic lattice
sums using the Ewald summation method [152]. This ensures that
the electrostatic (Madelung) energy of periodic configurations is ex-
actly recovered in the classical limit, t/V → 0. A full derivation of
the Ewald summation for general dimension d and interaction range
α can be found in Appendix B. We performed all calculations with a
sufficient number of cluster replicas to guarantee the convergence of
the non-local potential. The Ewald summation typically only requires
a few replicas to reach convergence (Nreplicas ∼ 5). For our codes writ-
ten in C++, we used Nreplicas = 200. However, for our codes written in
Python, we reduced this number to Nreplicas = 5 due to Python’s slow
treatment of loop structures. We benchmarked the results from the
Python codes against those of the C++ codes to ensure that no errors
were introduced by reduction of the number of replicas.

With the specifics of the model and the method established, we now
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proceed to the results for our long-range interacting model of spinless
particles. First, we shall provide analytical estimates of phase transi-
tions for our model before proceeding to a presentation of the phase
diagram, complete with a description of all phases in it. Finally, we
will analyze the correlated pseudogap phase that we discover for long-
range interactions and we discuss its relation to the classical Coulomb
gap caused by self-generated disorder.

3.3 Analytical estimates

Before diving into the details of the phase diagram in the following
section, we would like to paint a general picture of what one should
expect based on previous studies and physical intuition. We remind
the reader that the Hamiltonian of our system is of the form

HLR = −t
Ns

∑
〈ij〉

(ĉ†
i ĉj + h.c.) +

V
2

Ns

∑
ij

n̂in̂j∣∣Rij
∣∣α (3.6)

where α controls the range of the interactions. Naturally, we want to
understand where to expect phase transitions (if any) in terms of the
energy scale, V/t. We begin by examining the classical limit (t = 0)
where the ground state is determined by the configuration with the
minimum electrostatic (Madelung) energy. As the interaction between
particles is repulsive, we intuitively expect that the charges in this
ground state would arrange themselves in an ordered fashion. In other
words, we expect them to form a generalized Wigner crystal at zero
temperature to minimize the electrostatic interactions [157, 158]. We
note that as we are considering a lattice model (as opposed to the
continuum in the original proposition of the Wigner crystal), then the
ordered electrostatic configuration must minimize the repulsive inter-
actions with respect to the geometric constraints of the lattice.

We take the nearest-neighbor limit (α → ∞) of interactions, which
corresponds to

HNN
classical =

V
2

Ns

∑
〈ij〉

n̂in̂j

Rα
1

, (3.7)

where 〈ij〉 indicates that the summation is restricted to nearest neigh-
bors. The distance between nearest-neighbor sites, R1, is trivially equal
to one lattice spacing, but we retain its expression in the Hamiltonian
for the sake of completeness. Spinless particles on triangular lattice at
half-filling (one particle every two sites) display a macroscopic num-
ber of degenerate configurations that minimize the electrostatic energy.
Two such configurations are shown in Fig. 3.4 for a typical finite clus-
ter (Ns = 12 sites) with periodic boundary conditions. The boundary
conditions are depicted by the repeated images of the central cluster.

The panel on the left shows a threefold order of a fraction of the
electron density (black sites), while the remaining charges (blue sites)
occupy the honeycomb lattice excluded by the threefold sites. The
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Figure 3.4: Energetic cost of the
threefold-ordered (left) and stripe-
ordered (right) phases. The nearest-
neighbor interactions (green) sum up
for a total energy of ENN

3fold = ENN
SO = 6V.

Madelung energy of this configuration, computed as a summation
over all of the lattice legs in the finite cluster that connect two occupied
sites (highlighted in green), is ENN

3fold = 6VR−α
1 = 6V. This value is the

same as the Madelung energy of the stripe order configuration (right
panel of Fig. 3.4) where the lattice legs connecting two occupied sites
are again highlighted in green.

Figure 3.5: Energetic cost of the
threefold-ordered (left) and stripe-
ordered (right) phases. The next-nearest-
neighbor interactions (green) sum up for
a total energy of ENNN

3fold = 6V + 7VR−α
2

and ENNN
SO = 6V + 3VR−α

2 .

We would like to understand how the respective energies of these
configurations changes with the inclusion of longer-ranged interac-
tions. As such, we extend the range to include next-nearest-neighbor
interactions,

HNNN
classical =

V
2

Ns

∑
�ij�

n̂in̂j

Rα
ij

, (3.8)

where � ij � indicates the summation over next-nearest neighbor
sites. The Madelung energies with next-nearest-neighbor interactions
now differ between the two configurations as shown in Fig. 3.5. The
nearest-neighbor interactions are still highlighted in green and the
next-nearest-neighbor interactions are highlighted in purple. We ob-
serve that the energy difference between the two configurations is

∆ENNN = ENNN
3fold − ENNN

SO = 4VR−α
2 (3.9)

which indicates that the stripe-ordered (SO) configuration becomes
more favorable with the inclusion of longer-ranged interactions. We
now have a basic understanding of the impact of the long-range inter-
actions on the competing charge orders due to electrostatic repulsion
in the classical limit.

Next we proceed to examine what happens when we include quan-
tum fluctuations. If we start again from the nearest-neighbor limit
(α→ ∞), this corresponds to the t−V model,

Ht−V = −t
Ns

∑
〈ij〉

(ĉ†
i ĉj + h.c.) +

V
2

Ns

∑
〈ij〉

n̂in̂j, (3.10)
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which has previously been studied via exact diagonalization in Refs. [159,
160]. This model hosts a pinball liquid, which will be discussed in
greater detail in the following section. For the time being, it suffices to
describe this phase as the quantum analogue of the threefold-ordered
classical phase presented in Fig. 3.4 where a fraction of the charge den-
sity remains localized (black sites) while the remaining charge density
(blue sites) delocalize and flow around the honeycomb lattice excluded
by the black sites. A sketch of this phase is shown in Fig. 3.6.

Figure 3.6: Illustration of the pinball liq-
uid phase.

Figure 3.7: Illustration of the evolution
of energy for the pinball (black) and
stripe order (blue) states as a function of
quantum fluctuations, t.

For the moment, we are only concerned with determining the melt-
ing transition from the pinball liquid phase to the Wigner crystal phase,
in terms of the energy scale, V/t, and the range of interactions, α. In
order to do this, we compare the energies of the two phases to the low-
est order of the kinetic term, t. These values have been computed in
Ref. [159] as ∼ t for the pinball phase and ∼ t2 for the stripe-ordered
phase. We observe that the pinball liquid gains more kinetic energy
than the stripe-ordered phase when the quantum fluctuations are weak
(small t). This concept is illustrated in Fig. 3.7.
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Figure 3.8: Preliminary estimate of the
phase diagram in (V/t, α) space for our
long-range interacting Hamiltonian.

Finally, we predict the melting transition from the pinball liquid
phase to the (striped) Wigner crystal phase at large α by comparing
the difference in electrostatic energy of the two phases to the lowest
order in the kinetic term,

∆ELR ∝ t −→ VR−α
2 ∝ t −→

(
V/t

)
c ∝ 3α/2 (3.11)

Here we have used the fact that the next-nearest-neighbor distance,
R2, on the triangular lattice is

√
3. We additionally emphasize that

the factor of 4 in the difference in Madelung energies calculated previ-
ously arises from the simple case of comparing nearest-neighbor to
next-nearest-neighbor interactions, ∆ENNN. Therefore, we chose to
write the difference in Madelung energies in a more general form,
∆ELR ∝ VR−α

2 , to emphasize the fact that this prefactor can change
depending on the lattice geometry and range of interactions. This esti-
mated transition is plotted in a preliminary phase diagram in Fig. 3.8.

At smaller values of α, we anticipate that the stripe-ordered (Wigner
crystal) melts into another phase as the existence of the pinball is
pushed to weaker values of t/V with increasing range of interactions
(see Fig. 3.8). Furthermore, classical studies of long-range interacting
systems provide us with the insight that the Wigner crystal becomes
increasingly unstable with increasing interaction range [152]. These
two insights lead us to expect that a new phase will be obtained upon
the melting of the stripe ordered (Wigner crystal) phase. This new
phase will likely retain strong electronic correlations reminiscent of
the stripe-ordered phase, a topic that will be discussed at length in the
remainder of this chapter. Furthermore, the melting transition will oc-
cur when defects around stripe order become energetically favorable
as they gain kinetic energy by their proliferation [161].

To understand this transition, we focus on the charge-ordered phase,
previously shown in Fig. 3.4, in the strong coupling limit, t/V → 0.
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The stripe-ordered configuration minimizes the electrostatic interac-
tions and any modification of the placement of the charges will nec-
essarily result in a higher Madelung energy. It is straightforward to
determine that the lowest excited state is obtained by creating a defect
that consists of displacing a particle by one lattice spacing from the
occupied stripe to the unoccupied stripe [162] (see Fig. 3.9). The cre-
ation of this defect will necessarily cost a certain amount of potential
energy, Ed, due to the electrostatic interactions. The exact value of Ed

will depend on the range of interactions, α.
Figure 3.9: Creation of a defect (black ar-
row) in the stripe-ordered phase in the
thermodynamic limit. The blue arrows
indicate the directions in which the de-
fect can move, thereby gaining kinetic
energy.
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Figure 3.10: The defect creation energy,
Ed, as a function of α for different system
sizes with Ns sites (top panel). The black
line indicates the asymptotic limit calcu-
lated through finite-size scaling (bottom
panel).

As quantum fluctuations are turned on (t/V > 0), these charge de-
fect excitations will become more accessible with longer-ranged inter-
actions. We can estimate the quantum melting transition as it should
occur via the proliferation of these low-lying defects. In other words,
we anticipate that the quantum melting transition takes place when
the energetic cost of creating a defect is overcome by their gain in ki-
netic energy, t ∼ Ed [161–163]. In the small α limit, we can determine
an expression for Ed by computing the differences in Madelung energy
of a stripe-ordered configuration and a defect configuration. These en-
ergies are readily obtained as a function of α by the Ewald summation
method (top panel, Fig. 3.10). The energies are fit to a linear model,
Ed = a0 + a1α, the slope of which is plotted against the inverse system
size in the bottom panel of Fig. 3.10. The intercept of this finite-scaling
analysis yields the asymptotic value expression Ed ' 0.469Vα, which
we use to obtain an estimate for the critical interaction strength for the
quantum melting transition at small α,

Ed ∼ t −→ (V/t)c ∝ 1/α. (3.12)

We combine this with our earlier estimate of the transition from the
pinball phase to the stripe-order phase for a preliminary phase dia-
gram shown in Fig. 3.11. At this point, we have established a prelim-
inary understanding of the effects of long-range interactions in quan-
tum lattice models based upon our knowledge of nearest-neighbor
models and long-range interactions in the classical limit. However,
this is the limit of analytical estimates that we can obtain and we must
proceed to analyzing our long-range Hamiltonian (Eq. (3.2)) numeri-
cally. This is done via exact diagonalization (discussed in Chapter 2)
and we present our numerical results in the remainder of the chapter.
First, we establish a comprehensive phase diagram in terms of interac-
tion strength, V/t, and range, α. The discussion on the phase diagram
is followed by an in-depth analysis of the novel correlated phase dis-
covered and its connection to the Coulomb gap observed in classically
disordered systems.

3.4 Phase diagram

In this chapter we study a quantum lattice model with generic inter-
actions of the form R−α. Our model essentially serves as a hybrid be-
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tween the conventional Hubbard model which is used to strongly cor-
related lattice systems and the Pariser-Parr-Pople model which exam-
ines long-range interactions in quantum chemistry calculations [164].
We reproduce the Hamiltonian here for the convenience of the reader,

H = −t
Ns

∑
〈ij〉

(ĉ†
i ĉj + h.c.) +

1
2

Ns

∑
ij

Vee(Rij, α)(n̂i − n̄)(n̂j − n̄). (3.13)

The two main parameters of interest to us are the range of the interac-
tions, α, and the ratio of the interaction strength to the kinetic energy,
V/t.
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Figure 3.11: Preliminary estimate of the
phase diagram in (V/t, α) space for our
long-range interacting Hamiltonian con-
structed from estimates for the transi-
tions from pinball to Wigner crystal (dot-
ted) and from Wigner crystal to corre-
lated metal (dashed).

Arguably the most fundamental classification that we can make is
to determine whether the system is an insulator or a metal with re-
spect to these parameters. This task can be carried out by an analysis
of a quantity known as the Drude weight, D, which represents the
response of the system to a static electric field. Equivalently, D corre-
sponds to the ω = 0 limit of the optical conductivity [165]. The optical
conductivity is a measure of the current-current correlation function
and at T = 0K has the form

σ(ω) = Dδ(ω) + σreg(ω). (3.14)

In the case of a metal, we expect a finite value of D whereas the Drude
weight of an insulator will vanish [166]. With TBCs, the Drude weight
can easily be computed as an average over a grid of flux points (as in
Ref. [149]). At each flux point, we evaluate

Dµ(ϕ)

2πe2 =
1

2Ns
〈0, ϕ|Fµµ|0, ϕ〉+ 1

Ns
∑

n 6=0

∣∣ 〈n, ϕ|Jµ|0, ϕ〉
∣∣2

E0(ϕ)− En(ϕ)
(3.15)

where

Jµ =
∂H
∂ϕµ

and Fµν =
∂2H

∂ϕµ∂ϕν
. (3.16)

and µ, ν represent directions along the lattice. The notations |0, ϕ〉 and
|n, ϕ〉 indicate the ground state and the n-th excited state, respectively,
for a given flux, ϕ = (ϕx, ϕy). As a reminder, TBCs only modify
the hopping terms of the Hamiltonian which enables this particular
expression of the Drude weight in terms of derivatives of the flux.

0.0

0.2

0.4

0.6

0.8

1.0

1

10

100

1 10

0.01

0.1

1

Figure 3.12: The color map is the Drude
weight (697 grid points, Ns=12 sites, 400
TBCs).

Based upon these calculations, we present a rudimentary phase dia-
gram of the long-range interacting model (Eq. 3.13) as a function of the
power-law exponent α and interaction strength, V/t, in Fig. 3.12. The
color map represents the value of the ratio of the Drude weight to the
non-interacting value, D/D0. This quantity enables us to quickly char-
acterize areas of the phase diagram as metallic phases (blue regions)
or insulating phases (light green regions). For Fig. 3.12, the Drude
weight has been calculated in the x̂ direction of the rotationally sym-
metric Ns = 12 cluster on the triangular lattice. The classification in
Fig. 3.12 roughly agrees so far with the general results that we estab-
lished in the previous section: strong electronic interactions will drive
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the system towards an insulating state whereas quantum fluctuations
promote the delocalization of electrons, resulting in a metallic state.
We expect that the insulating phase will host a charge-ordered pat-
tern, with threefold-order and stripe-order being equally likely in the
limit of nearest neighbor interactions. We will examine this direction,
along with other signatures of charge ordering, next.

Figure 3.13: Example of three-fold order
classical configuration with pins (black
circles) and balls (blue circles).

With the primary characterization of the phase diagram by D/D0

complete, we proceed to examine another observable to better define
the different phases present—the charge correlation function evaluated
in momentum space. This observable is defined as

C(q) = 〈ψ0|ρ̂qρ̂−q|ψ0〉 , (3.17)

where |ψ0〉 is the ground state wave function and ρ̂q is the Fourier
transform of the number operator

ρ̂q =
1√
Ns

Ns

∑
i=1

e−iq·ri n̂i.

This quantity allows us to determine the presence and structure of
any charge ordering in the system. We begin by examining C(q) for
the nearest-neighbor type interactions (α → ∞) in the classical limit,
t/V = 0. This corresponds to the lower right corner of Fig. 3.12. As
mentioned in the previous section, there exist infinitely many classical
configurations in which part of the particles are located on a superlat-
tice with three-fold periodicity (wave vector q = K) while the remain-
ing charge density is distributed randomly throughout the remaining
honeycomb lattice [159, 160]. In other words, the threefold order cor-
responds to a peak in the charge correlation function at q = K. The
threefold-ordered particles on the superlattice are referred to as pins
and the remaining particles are referred to as balls. These classically
degenerate configurations all have the same Madelung (electrostatic)
energy per site, EMad/Ns = V/2, as shown in Fig. 3.13.

Figure 3.14: Illustration of pinball liq-
uid where "pins" (black circles) are sur-
rounded by the remaining charge den-
sity (blue) flowing over the hexagonal
sublattice.

As discussed in the previous section, finite quantum fluctuations
(t/V > 0) will lift this degeneracy as the quantum fluctuations mini-
mize the kinetic term for the balls (Fig. 3.14). This minimization yields
a net energy gain ∝ t and leads to a unique ground state known as the
pinball liquid [159]. The influence of the three-fold charge correlation
remains from the classical limit (see Fig. 3.15) and this phase eventu-
ally evolves into a normal metal as the quantum fluctuations become
the dominant energy scale (t/V → ∞) [167]. As we are concerned
primarily with the effect of long-range interactions, we will not spend
more time discussing the pinball liquid, but the interested reader can
find more information about this phase in Refs. [159, 167, 168]. Fur-
thermore, as we are not interested in the pinball liquid, it is acceptable
that one of our finite-size clusters with Ns = 24 sites does not respect
three-fold symmetry as mentioned previously in Sec. 3.2.
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Figure 3.15: C(q) as a function of t/V
on the Ns = 12 site cluster (triangular
lattice) for α = 16. The threefold correla-
tions (q = K) remain high as the pinball
liquid melts into a normal metallic state.
The black line indicates C(q) for all or-
ders q 6= M, K.

We have already discussed how quantum fluctuations lift the macro-
scopic degeneracy of threefold-ordered ground state configurations in



72

this limit. This degeneracy can also be lifted with the inclusion of
long-range interactions [110]. Therefore we next consider the effect
of increasing the range of the interactions by decreasing the value of
α in the electrostatic potential term. Let us assume that our starting
point in the phase diagram is again the classical limit (t/V = 0) of a
system with short-range interactions (α → ∞). As we reduce α, this
corresponds to moving from the bottom right corner of Fig. 3.12 to the
bottom left corner.
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Figure 3.16: The evolution of the charge
correlation function across the Wigner
crystal-pinball liquid transition as a
function of α. Results presented from the
Ns = 12 site cluster at V/t = 50 with
16 points considered in the average over
TBCs.

Increasing the range of interactions beyond that of nearest-neighbor
interactions immediately lifts the degeneracy, leading to a charge-order
insulator in which the charges form linear stripes with the ordering
wave vector q = M. This stripe-ordered phase is the lattice analogue
of a Wigner crystal [162], and will remain insulating even in the pres-
ence of weak quantum fluctuations. This can be observed in a large
region at the bottom of Fig. 3.17 where D/D0 ≈ 0 (light green in the
colormap). Fig. 3.16 provides evidence for this transition by demon-
strating the evolution of the momentum-resolved charge correlation
function by varying α. We clearly observe a sharp transition for αc ≈ 7
as the main contribution to C(q) changes from q = M (stripe) to q = K
(threefold). Note that for short-range interactions (α > αc) the pinball
order is not the uniquely dominant order present in the ground state,
which can be seen by the fact that C(q = K) does not saturate at
the maximum value 1/Ns ≈ 0.083. The predicted transition from this
stripe-ordered insulating phase to the pinball liquid was previously
discussed in Sec. 3.3 and we update our phase diagram to include this
transition line (see Fig. 3.17, dotted line).
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Figure 3.17: Updated phase diagram
with the transition between the pinball
liquid and Wigner crystal phase (dotted
line).

When the interactions are sufficiently long-ranged (α ≤ 2), the
stability of the stripe-ordered insulator decreases with α, revealing a
dome-like shape (see Fig 3.17). This instability is not surprising given
the fragile nature of the Wigner crystal [116, 152]. This fragility mani-
fests itself in the elusive nature of the Wigner crystal, which is difficult
to detect and has only been observed in low-dimensional systems at
very low temperatures [116, 169]. Recently, moiré bilayers in transi-
tion metal dichalcogenide heterostructures have been found to host
Wigner crystals at a variety of fractional fillings [46, 120, 169]. Wigner
crystals are typically described in terms of a dimensionless parameter,
rs = r0/aB, that describes the average distance between two electrons
in units of the Bohr radius. Here r0 represents the typical distance be-
tween two electrons and aB = h̄2/me2 represents the Bohr radius. The
typical energy scales in a two-dimensional electron gas (with a pure
Coulomb interaction) can be expressed in terms of this parameter as

ECoul =
e2

r0
=

2
rs

[
Ry
]

(3.18)

Ekin =
EF

2
=

h̄2

2mer02
=

1
r2

s

[
Ry
]

(3.19)

where we have assumed that the kinetic energy follows from a parabolic
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energy dispersion relation, ε ∝ k2, and EF represents the Fermi en-
ergy [170]. The energies are reported in units of 1Ry = me4/2h̄2 =

13.6eV and equating the two energies leads us to the estimated value
rs = 1/2. Wigner originally predicted the existence of the interaction-
driven electron solid (Wigner crystal) in the low density limit (rs � 1)
where the Coulomb interaction dominates the kinetic energy [114].
Quantum Monte Carlo calculations have predicted that rs ' 31 at the
transition from crystal to liquid in the case of the two-dimensional
electron gas [171]. This value is much larger than the rough estimate
(rs = 1/2) previoulsy obtained, suggesting that quantum fluctuations
play a key role in stabilizing the metallic phase. Furthermore, the
large value of rs implies that interaction effects should be strong at the
transition and thus, we anticipate that the liquid phase obtained upon
melting from the stripe-ordered phase will similarly display strong in-
teraction effects. In particular, we expect that the stripe-ordered phase
will melt due to low-lying, shear collective modes (as is the case in the
classical electron solid [152]) and that the resulting metallic phase will
exhibit short-range spatial correlations similar to those in the stripe-
ordered crystal [172], giving rise to a large correlation energy.

Figure 3.18: The Coulomb interaction
(black) dominates the kinetic energy
(blue) in the Wigner crystal limit.
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Figure 3.19: Updated phase diagram
with the transition between the pin-
ball liquid and Wigner crystal phase
(dashed line), and the transition between
the (correlated) metallic phase and the
Wigner crystal phase.

In the previous section, we discussed the role of charge fluctuations
in the melting transition as a function of α by examining the low-lying
excitations, or defects, from the stripe-ordered phase. The quantum
melting transition occurs when the gain in kinetic energy associated
with the proliferation of these defects outweighs the cost to create a
defect, t ∼ Ed [161–163]. We previously obtained a qualitative estimate
for the melting transition and have updated the phase diagram with
this estimate (dashed line) in Fig. 3.19. At this point, the stripe-ordered
phase melts into a metallic state, driven by charge fluctuations that are
favored by the long-ranged nature of the interactions. In the process,
the metallic system inherits strong correlation effects, reminiscent of
the melting of the Wigner crystal in the continuum.

As a reminder, the colormap in Fig. 3.20 indicates the value of
the Drude weight with respect to the non-interacting value, D/D0,
computed on a finite cluster of Ns = 12 sites and averaged over 400
TBCs. The metal-insulator transition occurs when this quantity van-
ishes which corresponds to the light green region of the colormap.
The solid black dots in Fig. 3.19 indicate the position of the metal-
insulator transition in terms of V/t and α as computed on a finite
cluster of Ns = 18 sites. The values reported correspond to an average
obtained over 121 TBCs. Despite the use of symmetries and shifted
flux points, some spurious degeneracy effects were observed that led
to the removal of a subset of points from the average. This removal
was conducted by implementing a cutoff and discarding nonphysical
values below the cutoff (D/D0 ≤ −0.05). For any given α and V/t, at
most 30 points were discarded which still yields an accurate averaging
over 91 flux points. The development of a more rigorous evaluation
is currently underway that employs an alternative definition of D in
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Figure 3.20: Phase diagram of the trian-
gular lattice model with long-range in-
teractions. The line and the full sym-
bols indicate the metal-insulator transi-
tion to a stripe-ordered Wigner crystal,
signaled by the vanishing of the Drude
weight D (Ns=18 sites, using 121 TBCs).
The color map is the Drude weight (697

grid points, Ns=12 sites, 400 TBCs). The
gray dashed line is the charge order-
ing transition as obtained from the ran-
dom phase approximation (RPA), which
ignores correlations and does not cap-
ture the extreme fragility of the Wigner
crystal. The black dashed and dotted
lines are strong-coupling estimates for
the Wigner crystal melting.
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terms of the curvature of E(ϕ).
We bring the reader’s attention to the fact that the results agree re-

markably well for different system sizes, which suggests that the finite
size effects that can plague exact diagonalization calculations are con-
trolled by the use of TBCs and the Ewald summation technique. The
finite size agreement is also shown in Fig. 3.21 for the pure Coulomb
case, α = 1. Additionally, we would like to emphasize the impressive
agreement between our transition estimates and the numerical results
for the transitions.
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Figure 3.21: Finite size comparison of
D/D0 for clusters with Ns = 12 sites
(green) and Ns = 18 sites (blue).

At this point, we would like to complete the phase diagram by
considering an estimate for the region in which electron-electron cor-
relation effects are strong. This preliminary estimate is achieved by
a comparison of our results for the metal-insulator transition with
those predicted by the random phase approximation (gray dashed line,
Fig. 3.20) [173]. The random phase approximation is a mean-field level
approximation that is capable of correctly capturing the onset of lo-
cal charge order. However, this technique predicts the metal-insulator
transition to occur at much lower values of the interaction strength,
V/t, than we observe in our exact diagonalization results. This over-
sight occurs because this mean-field treatment completely neglects the
strong correlation effects inherited from the charge-ordered insulating
phase at small α. These strong correlation effects will be discussed in
more detail in the following sections.

We can conclude that the region between the long-range ordering
line and the RPA line corresponds to a novel correlated metallic phase.
At this point, we have identified four unique phases in the phase dia-
gram as a function of V/t and α: normal metal, pinball liquid, stripe
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ordered insulator (Wigner crystal), and correlated metal (see Fig 3.20).
If we examine more closely the pure Coulomb case (α = 1), we ob-
serve that it indeed qualifies as part of the small α region of the phase
diagram where strong interaction effects are expected to play an im-
portant role on the metallic side of the metal-insulator transition. As
reference, the critical interaction strength is (V/t)c ' 29, which cor-
responds to rs = 7.2. We bring the reader’s attention to the fact that
this is lower than the value expected in the continuum (rs = 31). This
reflects the fact that commensurability with the underlying lattice sta-
bilizes the Wigner crystal [174, 175]. Furthermore, we understand that
the long-range contribution to the creation of a defect is much lower
than the local, short-range scale (Eα=1

d � V). This suggests that there
is a separation of energy scales between the local order (Elocal ∼ V)
and the global, long-range order (Eglobal ∼ Eα=1

d ) that is responsible
for both collective behavior and the quantum melting transition. This
separation of energy scales shall have significant consequences on the
electronic properties of the metal as shall be discussed in the following
sections.
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Figure 3.22: Comparison of the two-
dimensional quantum phase diagram
of our model (black) to the three-
dimensional classical phase diagram of
Ref. [152] (blue).

In summary, we have established the phase diagram of our long-
range interacting spinless model presented in Eq. (3.13) in terms of
interaction strength, V/t, and range, α. The numerical results coincide
remarkably well with analytical estimates obtained from the classical
limit (discussed in detail in Sec. 3.3). Strikingly, the phase diagram in
Fig. 3.20 qualitatively resembles that of the classical electron solid in
d = 3 [152], assuming that one considers the quantum fluctuations, t,
on the same footing as the thermal fluctuations, T. We produce here a
rough comparison of the two phase diagrams in Fig. 3.22 to highlight
this analogy. The classical phase space, described by the interaction
range, α, and temperature, T, displays a Wigner crystal phase in a re-
gion that is roughly equivalent to that of the quantum version. The
classical results also demonstrate the existence of a pseudogap phase
that eventually melts into a normal metal beyond the RPA prediction
(blue, dashed line). Indeed, the classical results foreshadow the signif-
icance of strong electronic correlations arising from the Wigner crystal
phase which will be discussed in greater detail in the remainder of this
chapter.

3.5 Correlated pseudogap metal
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Figure 3.23: The occupation function, nk,
as a function of the ky component of k.
The transition from occupied (nk = 1) to
unoccupied (nk = 0) is quite sharp for
weak interactions. However, the discon-
tinuity closes with increasing interaction
strength, eventually disappearing as the
system transitions from metal to insula-
tor.

In this section, we will delve deeper into the presence of electronic cor-
relations and their ensuing effects by focusing on the pure Coulomb
case of repulsive interactions (α = 1). We shall begin by providing
evidence for correlation effects in the metallic state obtained upon
the melting of the stripe-ordered insulator by quantum fluctuations.
Furthermore, we will discuss how the correlation mechanism differs
significantly from the conventional Mott-Hubbard mechanism and the
generality of results in terms of lattice geometry. We argue that the fol-
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lowing information clearly indicates that long-range interactions pro-
vide a novel method for correlated behavior in quantum materials.

We begin with a discussion of the quasiparticle weight, Z, as it is
a direct indicator of the correlated nature of a system. This quantity
is calculated as the magnitude of the discontinuity of the occupation
function, 〈nk〉 = 〈ψ0|n̂k|ψ0〉, where n̂k = ĉ†

k ĉk with ĉk (ĉ†
k) the Fourier

transform of the annihilation (creation) operator in real space, ĉi (ĉ†
i ).

TBCs enable us to compute this quantity along a finely discretized path
in momentum space. For a given path, we begin by determining 〈nk〉
at k = 0 (the Γ point). We then apply a flux such that k is shifted by the
pseudo-momentum associated to the boundary conditions [144]. The
shift is controlled such that k lies along the line in momentum space
dictated by the given path. An example of the jump (discontinuity)
in 〈nk〉 that closes upon approach of the metal-insulator transition,
(V/t)c ≈ 29, is shown in Fig. 3.23. As can be seen in this figure, the
reported values for 〈nk〉 display non-monotonic behavior for V/t =

20. Whether this non-monotonic behavior is a numerical artifact or
a sign of Fermi surface distortion at the approach of the transition
remains an open question.
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Figure 3.24: The quasiparticle weight
Z computed over a path in momentum
space dictated by the angle θ from the
horizontal (shown in inset). The average
over all paths is shown in the black line
with square symbols.

Our results indicate some degree of anisotropy, stemming from an
anisotropic quasiparticle renormalization. Therefore, we computed Z
as an angular average over four different paths, shown in Fig. 3.24. The
angle θ is measured from the line between Γ and the high symmetry
point K located at the corner of the Brillouin zone (see Fig. 3.3). We
note that Z goes to zero as V/t approaches its critical value, (V/t)c ≈
29, signaling that the effective quasiparticle mass, meff ∼ 1/Z, di-
verges at the approach of the melting transition and that the metallic
phase becomes more correlated [176]. Indeed, the divergence of the
quasiparticle mass can be described as a signature of strongly corre-
lated systems. This quantity also diverges in the well-studied Mott
metal-insulator transition, with its divergence arising from the zero
frequency peak of the single-particle spectral function.

In order to understand if we have a similar mechanism driving the
strongly correlated behavior in our model, we next consider the single-
particle spectral function, A(ω). The spectral function, reported from
calculations on the Ns = 18 site system, is evaluated as

A(ω) = − 1
π

Im
Ns

∑
i=1

∑
n 6=0

|
〈
ψN+1

n
∣∣ĉ†

i

∣∣ψN
0
〉
|2

ω− (EN+1
n − EN

0 ) + i0+

+
|
〈
ψN−1

n
∣∣ĉi
∣∣ψN

0
〉
|2

ω− (EN
0 − EN−1

n ) + i0+
, (3.20)

where the summation over i indicates a sum over the discrete lattice
sites in real space. The subscripts on the wave functions indicate the
ground or n-th excited state, while the superscripts indicate the num-
ber of particles. As we are interested in the half-filled case in our spin-
less model, N corresponds to 9 particles on the 18 site cluster (similarly,
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Figure 3.25: Spectral function A(ω) at α
= 1 and Ns = 18 and averaged over 121
TBCs, illustrating the pseudogap phe-
nomenon. All spectra are smoothed by
a Gaussian broadening δ = 0.5t. Inset
shows how A(ω = µ) decreases in a lin-
ear manner until vanishing at the transi-
tion.

N + 1 = 10 and N − 1 = 8).
When we examine the evolution of A(ω) as a function of V/t lead-

ing up to the ordering transition (Fig. 3.25), we observe that a pseu-
dogap opens at the Fermi energy (ω=µ). This pseudogap progres-
sively deepens and widens as the single-particle excitations move to-
ward higher energies, ω ∼ V/t. The density of states at the Fermi
energy, A(ω = µ), falls approximately linearly with V/t, then flat-
tens deep in the pseudogap phase and eventually vanishes at the MIT
at (V/t)c ' 29 (inset of Fig. 3.25). Beyond the transition point, the
pseudogap coalesces into a hard (insulating) gap in the stripe phase.
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Figure 3.26: Using a grid of flux points
with Nϕ = 16 (black) is already sufficient
to track the behavior of A(ω = µ) in the
pseudogap phase. Increasing the num-
ber of flux points to Nϕ = 121 displays
the same trend in A(0).
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Figure 3.27: A comparison of the non-
interacting spectral function on the trian-
gular lattice in the thermodynamic limit
(black) and averaged over 121 twisted
boundary conditions for a calculation on
the Ns = 18 site cluster (blue) with Gaus-
sian broadening δ = 0.5t.

As the interaction strength increases, the development of a pseudo-
gap combined with the divergence of the quasiparticle mass (meff ∼
1/Z) implies that the long-ranged interactions cause an ordering tran-
sition that is markedly different from the conventional Mott-Hubbard
mechanism. In the Mott-Hubbard metal-insulator transition, the spec-
tral function features a quasiparticle peak that remains pinned at the
Fermi energy (ω=µ) and the narrowing of this peak with Z causes the
divergence of the effective mass [20, 148]. However, our results find a
divergence of the quasiparticle mass in the absence of a pinned peak.
Instead, the value of the renormalized density of states at the Fermi
energy, A(µ), falls continuously to 0, thereby controlling the quasipar-
ticle renormalization (Fig. 3.25).

Before proceeding, we take a moment to discuss a few technical as-
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Figure 3.28: The development of the
pseudogap in the spectral function on
the square lattice for α = 1 as V/t
is increased (gradient of green to blue
lines; the corresponding values of V/t
are indicated in the figure legend; Gaus-
sian broadening δ = 0.7t). The inset
shows the value of A(ω − µ) at ω = µ
which steadily decreases before a hard
gap opens at V/t ≈ 8. Values are re-
ported for a finite cluster with Ns = 18
sites and averaging over Nϕ = 121 flux
points.
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pects regarding the computation of the spectral function. The results
presented in Fig. 3.25 were obtained by averaging over spectra evalu-
ated at Nϕ = 121 flux points (boundary conditions). However, Fig. 3.26

demonstrates that the spectral function was already well-converged
for the 4× 4 grid of flux points and increasing the size of the mesh
to 11× 11 did not qualitatively change the results. Furthermore, we
demonstrate how averaging over TBCs, coupled with Gaussian filter-
ing, enables us to reach the exact, thermodynamic result of A(ω) in
the non-interacting case in Fig. 3.27.1 10
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Figure 3.29: Phase diagram of the long-
range interacting spinless model on the
square lattice. As previously seen, col-
ormap corresponds to the ratio of the
Drude weight to the non-interacting
value, D/D0. The metal-insulator tran-
sitions computed with Nϕ = 16 points
(gray squares) and Nϕ = 400 points
(black circles) are shown.

One might argue that the existence of a correlated, pseudogap phase
is model-specific and possibly linked to the frustrating lattice geome-
try in our model (triangular lattice). Indeed, charge frustration arising
from the quarter-filling on the triangular lattice is suspected to give
rise to the exotic phases observed in the θ − (ET)2X salts [59, 177, 178].
However, we show that the development of a pseudogap is a general
effect that does not depend on the geometry of the lattice. Indeed, the
collective behavior arising from long-range interactions necessarily in-
volves the coordination of many sites, regardless of the local lattice
geometry.

The spectral function for our long-range interacting model on the
square lattice is shown in Fig. 3.28 and similarly displays a pseudogap
that deepens and widens with V/t upon the approach to the ordering
transition. However, for short-ranged interactions, the square lattice
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will not give rise to a pinball liquid phase because the local coordi-
nation number does not frustrate the charge order at half-filling (one
particle every two sites). The phase diagram for the square lattice com-
puted for Ns = 12 is provided in Fig. 3.29. It is interesting to note that
Refs. [152,162,179] have demonstrated frustration of charge order aris-
ing from long-range interactions in otherwise non-frustrated lattices
(square, cubic) in the classical limit. In summary, the development of
a strongly correlated pseudogap phase arising from long-range inter-
actions is a general phenomenon and does not rely on the geometrical
frustration of the lattice.

In this section we have focused on the pure Coulomb case (α = 1) in
order to investigate the correlated nature of the metallic state reached
upon melting of the stripe-ordered (Wigner crystal) phase in the small
α region of the phase diagram (Fig. 3.20). We have examined the quasi-
particle weight, Z, as a measure of the strength of correlations and we
have demonstrated that it is strongly reduced in the correlated metal
phase, before eventually disappearing at the metal-insulator transition.
This behavior indicates the divergence of the quasiparticle mass, which
is usually associated with a narrowing peak at the Fermi level in the
Mott-Hubbard picture.

However, our results for the single-particle spectral function clearly
establish the absence of such a peak that drives the mass divergence.
Indeed, we have demonstrated that the long-range interactions in our
model act as a novel mechanism of strongly correlated behavior in
giving rise to a pseudogap in the spectral function. This signature of
strongly correlated behavior is not limited to conventionally frustrated
systems, as shown by the presence of a pseudogap in the results on
the square lattice. In the remainder of this chapter we shall investigate
the general nature of this mechanism and draw parallels with clas-
sically disordered systems. These systems typically exhibit so-called
Coulomb gaps in their density of states as a result of the long-range
interactions, a phenomenon remarkably similar to what we have ob-
served here.

3.6 Self-induced disorder

We have established that long-range interactions provide a general
mechanism for strongly correlated behavior in quantum electrons at
zero temperature. We now proceed to investigating the details of this
mechanism. We begin by remarking that the presence of a pseudogap
in the spectral function (see Figs. 3.25 and 3.28) is strongly reminis-
cent of the soft Coulomb gap characteristic of disordered insulators.
In those systems, the long-range interactions of an interacting electron
system with quenched disorder causes the density of states to van-
ish at the Fermi energy, creating a so-called Coulomb gap [180]. A
similar Coulomb gap phenomenon has also been established in clas-
sical Coulomb liquids in the absence of disorder. In these clean liq-
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uids, the long-range interactions from electrons beyond the correlation
length act as a source of self-generated disorder when considered col-
lectively [110, 152, 179, 181, 182].

Figure 3.30: Sketch of the suppression of
the density of states in the Coulomb gap
with increasing interaction strength (gra-
dient light to dark blue lines).

In 1975, Efros and Shklovskii proposed that long-range interactions
would necessarily suppress the density of states of disordered systems,
G(ε), near the Fermi surface at T = 0K such that G(ε) would tend to
zero as

G(ε) . |ε|d−1, (3.21)

where d is the dimensionality of the system [180] (see Fig. 3.30). The
presence of such a Coulomb gap was confirmed with a classical Hamil-
tonian that included an external disordered potential term at finite
temperature [180, 183]. In 1992, Efros further demonstrated that ex-
ternal disorder was not necessary to deplete the density of states at
the Fermi level [181]. Instead, long-range Coulomb interactions act as
a source of self-generated disorder that depletes the density-of-states,
G(ε), and the Efros-Shklovskii Coulomb gap phenomenon was spec-
ulated to occur as well in quantum electrons at T = 0K [181]. We
demonstrate its existence here.

To determine if the long-range interactions generate a source of dis-
order that drives the development of the pseudogap (Fig. 3.25), we
examine the distribution of on-site energies, arising from the electro-
static interactions between electrons. Our interaction potential is de-
fined with a summation over all pairs of sites, ∑Ns

ij . From this complex
interaction, it is not directly straightforward to disentangle the effects
of one site from the rest. Thus, we rewrite the potential as

Epot =
1
2

Ns

∑
ij

V(Rij, α)(n̂i− n̄)(n̂j− n̄)→ 1
2

Ns

∑
i
(n̂i− n̄)

Ns

∑
j

V(Rij, α)(n̂j − n̄)

︸ ︷︷ ︸
φi

(3.22)
where we identify the on-site potential as φi. This quantity is the elec-
trostatic interaction that a particle feels when it is located at site i. The
distribution of on-site potentials, P(φi), is then defined as

P(φi) =

〈
ψ0

∣∣∣∣∣δ
(

φi −∑
j 6=i

V(Rij, α)
(
n̂j − n̄

))
∣∣∣∣∣ψ0

〉
, (3.23)

where |ψ0〉 is the ground state wave function and the average electronic
density, n̄, has been included in φi to ensure charge neutrality, thereby
centering the results around φi = 0. As the system is translationally
invariant, we can consider the distribution of on-site potentials for a
fixed reference site, P(φ) = P(φi).

In the case of quantum electrons, P(φ) represents the fluctuating
landscape where the electron motion takes place. Fig. 3.31 shows that
a broad dip develops in P(φ) in a similar fashion to the pseudogap
opening observed in the full electronic spectrum, A(ω). The inset
of Fig. 3.31 illustrates the central value P(0) vs V/t for clusters with
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Figure 3.31: Distribution of the local
electrostatic potentials, P(φ), showing
the opening of the Coulomb gap. Also
plotted are P ∼ e−V/ξ|φ| with ξ = 2
(dashed line) and P = |φ| (solid line).
P(φ) was computed on a 4 x 4 grid of
flux points for Ns = 18 and broadened
with a Gaussian filter, δ = 0.05V. The
inset shows the central value P(0) vs
V/t for Ns = 18 (blue triangles) and 24
(green squares), and P(0) ∼ |V − Vc|2
(black line).

Ns = 18 and 24 sites, demonstrating that finite-size effects are under
control. We would like to emphasize that this pseudogap behavior is
unique to systems with long-range interactions. With decreasing range
of interaction (increasing α), the spectrum of on-site electrostatic po-
tentials loses its continuous nature. This can be understood intuitively
from the nearest-neighbor limit, α → ∞. In a nearest-neighbor model,
the only sources of interaction arise from neighboring sites that are
occupied. Therefore, the total on-site electrostatic potential can only
assume values that are integer multiples of V, where the maximum
integer value corresponds to the coordination number of the lattice.
The discrete nature of P(φ) for short-range interactions is shown in
Fig. 3.32 for the case α = 8. At weak values of interaction strength, we
observe that multiple (discrete) values of φ are accessible. However, in
the strong coupling limit, the system exists in a charge-ordered (stripe)
phase where only two values, +V and −V, are accessible.
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Figure 3.32: P(φ) for short-ranged inter-
actions with α = 8, averaged over a 4x4
grid of flux points.

When the system is in a charge-ordered state, the translational sym-
metry is spontaneously broken and we can expect a bimodal distri-
bution to arise from the charge order. However, in the case of pure
long-range interactions, shown in Fig. 3.31, we observe that a bimodal
distribution develops in P(φ) far from the Wigner crystallization tran-
sition. The fact that this structure develops far from the transition
indicates that the crystallization is truly a strong coupling phenomena
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Figure 3.33: The radial distribution func-
tion (left panel) as a function of distance
r. The charge correlation function (right
panel) evaluated at distances r1 = a
(blue) and r2 =

√
3a (light green) that

correspond to sites on the first and sec-
ond shells, respectively, from a reference
site.
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and signals the presence of Coulomb polarons, analogous to what has
been discovered boson-mediated charge ordering [184].

In addition to displaying a gap that falls with the pseudogap in
A(ω), we would also like to comment on the fact that P(φ) near
φ = 0 is suppressed faster than the proposed upper bound, |φ|d−1 =

|φ| (solid black line in Fig. 3.31) [180, 185]. However, the shape of
the soft gap in P(φ) at the transition is compatible with that caused
by short-range charge correlations in self-generated Coulomb glasses,
P ∼ e−V/ξ|φ| for d = 2 (dashed black line in Fig. 3.31) [179] where
ξ is the correlation length. In these glassy systems, a correlation hole
forms around the electrons in order to minimize their mutual repulsive
interactions. This correlation hole was shown to deplete the classical
DOS below the Efros-Shklovskii bound, PES ∼ |φ|d/α−1 in the general
case of d dimensions and interaction exponent α [179]. This correlation
hole, or electronic polaron, is a common feature of quantum electron
liquids with unscreened Coulomb interactions [172].

To examine the behavior of short-range correlations in our system,
we finally calculate the charge correlation function in real space,

C(ri − rj) =
Ns

∑
i,j
〈ψ0|n̂in̂j|ψ0〉 (3.24)

where n̂i is the occupation number operator for site i in second quan-
tization and |ψ0〉 is the ground state. As the system is translation in-
variant, we can evaluate C(ri − rj) at a reference site rj = 0 and rewrite
C(ri − rj) as

C(ri) =
Ns

∑
i
〈ψ0|n̂in̂0|ψ0〉 . (3.25)

This quantity is connected to the radial distribution function, shown
in the left panel of Fig. 3.33, which details the electronic density mod-
ulation as a function of the distance away from the particle. We ob-
serve that the radial distribution function, g(2)(r) = C(r)/n2, steadily
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decreases for the nearest-neighbor distance, r = 1 (in units of the lat-
tice spacing a) as the interaction strength is increased. At the same
time, g(2)(r) for the next-nearest-neighbor distance, r =

√
3, initially

increases with V/t before becoming partially suppressed at the stripe-
ordering transition (see right panel of Fig. 3.33). This quantity is
only partially suppressed because some next-nearest-neighbor sites
will necessarily be occupied in the stripe-order phase.

Figure 3.34: Assuming a diagonal stripe
order for illustrative purposes, the first
neighbors of a reference site (black) live
on either an occupied stripe (full blue
circles) or an unoccupied stripe (empty
blue circles). The shell of second-nearest
neighbors are shown in green.
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Figure 3.35: Difference of the charge-
charge correlation function C(ri − rj)
computed on the second and on the
first shell of neighbors, illustrating the
buildup of the correlation hole.

We are able to classify the sites {i} into various shells surrounding
the reference site (see Fig. 3.34). The first shell contains all of the
nearest neighbors, |ri − r0| = a, while the second shell contains the
next-nearest neighbors, |ri − r0| =

√
3a. In order to understand how

the electronic correlation changes with increasing V/t, we compute
the difference between the correlation with the second shell, C2, and
that with the first shell, C1. The results are shown in Fig. 3.35 for
calculations on the Ns = 12 and 18 site clusters. We observe that C2 −
C1 increases leading up to the metal-insulator transition, (V/t)c ≈ 29.
In other words, this signals the formation of a correlation hole around
each charge carrier. This build-up of short-range correlation in the
normal phase parallels the renormalization of the quasiparticle weight
previously shown in Fig. 3.24, until it is eventually interrupted by the
establishment of long-range stripe correlations at the metal-insulator
transition.

In conclusion, the pseudogap observed in the single-particle spec-
tral function evokes the concept of disorder-driven correlated behavior.
In particular, we recall that long-range interactions act as a source of
self-generated disorder in classical systems, leading to the develop-
ment of the so-called Coulomb gap in the density of states. Here we
have introduced a new observable, P(φ), that we refer to as the dis-
tribution of on-site electrostatic potentials. This quantity acts as the
quantum version of the classical distribution of on-site energies and
displays a soft gap that mirrors the pseudogap development in the
spectral function.

Strikingly, the shape of the gap in P(φ) resembles that observed in
Coulomb glasses which leads us to suspect that short-range correla-
tions are responsible for the exponential form of the gap. We measure
the build-up of these short-range correlations (the development of a
correlation hole) by calculating the difference in correlation between
a shell of next-nearest neighbor sites and a shell of nearest neighbor
sites (with respect to a reference site). In summary, we conclude that
long-range interactions act as a source of self-generated disorder be-
yond the correlation length, causing the suppression of the spectral
function near the Fermi level. With this information in mind, we turn
our attention to examining collective charge movement and excitations
in the context of disordered electrostatic landscapes.
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3.7 Collective charge excitations

As discussed in the previous section, long-range interactions are ca-
pable of self-generating a disordered environment which leads to the
existence of a strongly correlated, pseudogap phase on the metallic
side of the metal-insulator transition. We emphasize that this is unre-
lated to the Mott-Hubbard mechanism for strongly correlated behavior
which instead is controlled by a well-defined quasiparticle peak up to
the transition. In this section, we turn our attention to understanding
the nature of the low-lying charge excitations in the pseudogap phase
with strong short-range correlations.
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Figure 3.36: Classical spectral density of
plasmon modes in d = 2 as a function of
the interaction range, α.

We begin by considering the classical limit, t = 0. In Sec. 3.4, we
discussed the striking similarities in the phase diagrams of our quan-
tum model with that of a classical system with long-range interac-
tions [152]. In particular, we are interested in understanding the ex-
citations in the correlated pseudogap phase leading up to the Wigner
crystal ordering transition. In the classical case, where the fragility of
the Wigner crystal is well-known, it has been shown that the Wigner
crystal forms upon the freezing of the plasmon modes [152]. In other
words, at the approach of the ordering transition, these collective den-
sity excitations slow down until they eventually freeze at the transition.
As a function of the range of interactions, Fig. 3.36 shows the spectral
density of these modes, defined as

ν(ε) = ∑
k

δ(ε−Vk) (3.26)

where Vk is the Fourier transform of the interaction potential. Specifi-
cally, we observe that increasing the range of interactions (decreasing
α) results in a shift of the spectral peak (and the accompanying spec-
tral weight) to lower values of the excitation energy, ε − ε0. In other
words, the Wigner crystal is more unstable to long-range interactions.

Naturally, we would like to apply these ideas to our quantum model
in order to analyze the charge fluctuations present and their role in
the observed strongly correlated behavior. As such, we examine the
spectrum of collective charge fluctuations,

D(q, ω) = ∑
n

∣∣∣
〈
ψn
∣∣ρ̂q
∣∣ψ0
〉 ∣∣∣

2
δ
(

ω− (En − E0)
)

(3.27)

where ρ̂q is the Fourier transform of the charge density (n̂i), and ψn

and En are the n-th excited eigenstates and eigenenergies respectively.
This quantity essentially measures collective fluctuations (excitations)
corresponding to a particular charge order, as dictated by the wave
vector q. As we cross a charge-ordering transition from the disordered
phase to the ordered phase, the corresponding mode (q = qorder) in
the spectrum of charge fluctuations will go soft, ωpeak → 0. There-
fore, we begin our discussion of the charge fluctuation spectrum from
the metallic side of the metal-insulator transition and first consider the
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Figure 3.37: Left panel: D(q, ω) for q =
M, the stripe-order wave vector. A Gaus-
sian broadening δ = 0.2t has been ap-
plied. The location of the critical mode
is labeled with a circle. The values of
V/t for both the lines and the mark-
ers corresponds to those in the legend.
Right panel: The location of the peak as
a function of V/t. Three additional val-
ues of V/t beyond (V/t)c are reported
with the corresponding color in the leg-
end.

wave vector corresponding to stripe order as this provides a straight-
forward, pedagogical introduction to the charge spectrum.

For our half-filled system on the triangular lattice, the stripe-ordered
phase (wave vector q = M) minimizes the repulsive interactions be-
tween the particles. Therefore, we track the evolution of D(q = M, ω)

as a function of interaction strength leading up to the transition in
Fig. 3.37. In the limit of weak interactions (small V/t), the spectrum is
relatively flat with its maximum corresponding to a frequency ω ≈ 2t.
However, as the interaction strength increases, this collective fluctua-
tion mode strengthens into a peaked structure with the peak moving
towards zero. The location of the peak is displayed as a function of
V/t in the inset of Fig. 3.37. In other words, density fluctuations corre-
sponding to the stripe order (q = M) slow down and eventually freeze
at the transition, (V/t)c ≈ 29.

We have seen that collective fluctuations related to the stripe-order
wave vector are strong in the vicinity of the metal-insulator transition,
(V/t)c ≈ 29. However, this is not the only relevant order in the charge
spectral function going soft in the pseudogap phase upon the approach
to the metal-insulator transition. In Fig. 3.38, we show D(ω) averaged
over all wave vectors q (all orders). From the momentum-averaged
charge spectral function shown in Fig. 3.38, we conclude that there are
multiple, incipient charge orders competing with one another through-
out the correlated pseudogap phase. This conclusion aligns well with
that of Ref. [110] which demonstrated that long-range interactions in a
similar classical system give rise to glassy behavior with a macroscopic
degeneracy of metastable semi-ordered states. This can be seen in the
diffuse signature of the charge correlation function, C(q), around the
Brillouin zone (see Fig. 3.39). This diffuse nature indicates that the
system is susceptible to ordering along the entire edge of the Bril-
louin zone as many competing orders are frustrated by the long-range
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Figure 3.38: Left panel: Spectral func-
tion, D(ω), of the charge fluctuations av-
eraged over the Brillouin zone (Gaussian
broadening δ=0.2t). Right panel: The
frequency of the boson peak, control-
ling the timescale of the charge fluctu-
ations. The peak frequency is compared
for the averaged spectrum (blue) to the
frequency obtained from q = M (black).
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interactions leading up to the transition [182]. In other words, the
competition among many orders leads to the creation of a quasi-local
order mediated by the charge fluctuations. Translated to real space,
these zone-boundary features correspond to the buildup of a correla-
tion hole, previously studied as C2 − C1.

Figure 3.39: The intensity of the charge
correlation function, C(q), in the classi-
cal version of our model. Bright spots
indicate well-defined Bragg peaks corre-
sponding to stripe order, q = M. Diffuse
spots seen around the Brillouin zone in-
dicate the presence of other competing
orders. Adapted from Ref. [110].

Therefore, we conclude that the soft, collective mode seen in Fig. 3.38

arises from this diffuse region near the edges of the Brillouin zone.
At weak values of the interaction strength, we see that the averaged
mode occurs around ωavg ∼ t, lower than the value corresponding to
the stripe-order mode alone. As V/t increases, the system enters the
pseudogap phase and ωavg ∼ 0.2t, remaining lower than ωM. Both
modes soften at the approach of the transition, thereby indicating that
the timescale of collective charge fluctuations is slowing down. Fi-
nally, as V/t approaches its critical value, the stripe order dominates
and drives the system into the charge-ordered (Wigner crystal) phase.

Furthermore, we surmise that the long-range interactions produce
a separation of timescales between individual and global charge mo-
tion. This separation is highlighted upon comparison of the bosonic
frequency throughout the pseudogap phase (ωavg ∼ 0.2t) to the band-
width of the free electron model (W = 9t). The movement of indi-
vidual electrons in nearest-neighbor hopping processes should occur
rapidly. However, the long-range interactions create an energetic land-
scape with short-range correlations and longer-ranged disorder. These
effects constrain the movement of the global charge background to a
much longer timescale as a result.

In other words, changing from one disordered electrostatic configu-
ration to another necessarily requires the coordination and movement
of all of the charge carriers, but the mutual interactions of these car-
riers causes a collective jamming. This interaction-driven jamming es-
sentially signifies that the charge fluctuations background is almost
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frozen [182,186–188] because electrons now effectively move in a quasi-
static disordered landscape, which in turn enables the Efros-Shklovskii
phenomenon discussed earlier. The separation between the rapid move-
ment of individual electrons in nearest-neighbor hopping processes
and the much slower charge rearrangements on a global scale ought
to have a profound impact on the transport properties of such systems.
Indeed, this topic will be the discussion of the following chapter as we
examine the possibility that long-range interactions act as a general
mechanism for bad metallic transport in correlated systems.

3.8 Conclusions and summary

In summary, we have examined a spinless model of electrons with
power-law repulsive interactions at zero temperature where the range
of interactions is controlled by a continuous parameter, α. We have es-
tablished the phase diagram in terms of interaction range and strength
and classified the four distinct phases present: normal metal, pinball
liquid, stripe-ordered insulator (Wigner crystal), and a novel correlated
metallic phase [153]. This last phase exists for sufficiently long-ranged
interactions, α . 2. It is characterized by a suppression of quasiparticle
weight Z and the development of a pseudogap in the spectral function
A(ω) arising from the onset of charge order in the metal-insulator
transition. This manifestation of electronic correlation is inherently
different from that observed in conventional Mott-Hubbard physics
where the divergence of the quasiparticle mass is instead driven by
the narrowing width of the peak pinned at ω = µ.

Furthermore, we have demonstrated that this correlated behavior
driven by long-range interactions is a general phenomenon and is not
restricted to frustrated lattice geometries. As our model is spinless,
we evidently cannot examine the role of spin fluctuations in the metal-
insulator transition and we instead focus on understanding the charge
fluctuations. We identify the connection between the pseudogap in
A(ω) and the Efros-Shklovskii Coulomb gap, which is demonstrated
here in a quantum system for the first time since its prediction in 1975.
The Coulomb gap indicates the presence of Coulomb polarons as it
sets in far from the charge-ordering side of the metal-insulator tran-
sition. These polarons are most likely associated with the disordered
nature of the charge landscapes and evokes the idea of boson-mediated
charge ordering [184]. Interestingly, the shape of the Coulomb gap ob-
served in our system resembles that of Coulomb glasses [179] as the
build-up of local correlations suppresses the gap below the universal
Efros-Shklovskii bound. We conclude that long-range interactions act
as a source of self-generated disorder that gives rise to slow, collective
charge excitations. The momentum-resolved spectrum of these charge
fluctuations indicates that multiple orders compete with one another
throughout the correlated metallic phase, similar to the competition
unearthed in studies of classical Coulomb glasses [110] in the context
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of the quarter-filled organic salts, θ-(BEDT-TTF)2X, mentioned at the
beginning of this chapter. These materials show precursors of glassi-
ness despite the lack of structural disorder [189,190], and display frus-
trated metastable orders that compete with the stripe-ordering [190].

The slow nature of the collective charge excitations also indicates
a separation of timescales between individual electron motion and
global charge rearrangements, which could explain anomalous trans-
port trends observed in a number of materials. Additionally, this could
explain the success of the classical Monte Carlo approach used in
Ref. [110] to describe quantum systems with anomalous charge states,
such as the θ-ET2X salts. In particular, these materials display strange
metallic behavior [59, 191] that is compatible with strong scattering
by low-energy bosonic modes. Their optical conductivity spectra also
contain signatures of localization, indicating that self-generated ran-
domness could also be playing a key role in the charge transport mech-
anism [192, 193]. Furthermore, the separation of timescales suggests
that classical methods (or at least partially classical) could be used to
treat the problem, as we proceed to do in the following chapter. The
benefit of using such classical methods is that larger system sizes are
more accessible, thereby reducing finite size effects.

Due to the general nature of the effects revealed here, it is interesting
to investigate their relevance in other quantum materials exhibiting
bad metallic behavior [70, 74], especially those near integer fillings.
These systems typically host Mott insulators at integer fillings, but the
reduced screening ability of electrons at the onset of the Mott transition
implies that long-range interactions could potentially play a significant
role [121, 182, 187]. Furthermore, this begs the question of how the
interplay between spin and charge degrees of freedom impacts the
ability of long-range interactions to produce correlated, or anomalous,
behavior. This topic will be explored in greater detail in the following
chapter.
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4.1 Introduction

Numerous experiments throughout the past few decades have revealed
anomalous transport properties in several strongly correlated electronic
systems, which have collectively been classified as bad metallic sys-
tems [61, 76]. As a reminder, in this manuscript we define a bad metal
to be a metal whose resistivity surpasses the Mott-Ioffe-Regel limit de-
rived from semi-classical Boltzmann theory. For reference, we define
strange metals to be a subgroup of bad metals whose resistivity de-
pends linearly on temperature for a wide range of temperature. Our
main focus will be on understanding bad metallic transport in gen-
eral, as opposed to analyzing sources of anomalous power law trends
observed in strange metallic transport.

Bad metallic systems include the high-temperature cuprate super-
conductors [51], pnictides [52–54], fullerenes [55], vanadium dioxide
[56], ruthenates [57], layered organic salts [58, 59], and nickelates [60].
The fact that such a broad range of materials displays similarly anoma-
lous transport properties and can even have similar scattering rates
hints at the existence of one (or a few) general, material-independent
mechanism(s) driving this behavior [74]. Understanding the micro-
scopic mechanism(s) underlying bad metallic transport remains at the
forefront of open challenges facing the condensed matter physics com-
munity today despite the immense experimental and theoretical progress
made in the past half-century in understanding strongly correlated
systems. This challenge is relatively young given the fact that resis-
tivity saturation in conventional metals was only partly understood
as recently as the late 1970s [64, 76] and more recent developments
suggest that full saturation never happens [194].



92

Recently, it was observed that a universal Planckian timescale ex-
ists that might explain the bad metallic behavior observed in a vari-
ety of materials, each with different underlying microscopic mecha-
nisms [74]. This Planckian timescale prompted the proposal of a uni-
versal diffusion bound [73] governing the anomalous transport. This
idea arises from the description of bad metallic systems as incoher-
ent metals whose electric and thermal transport can be described by
simple diffusion relations [73]. These ideas condense the complicated
mess of potential mechanisms underlying bad metallic transport to
only the most essential elements, thereby establishing a general, uni-
fied theoretical description of anomalous transport across many classes
of strongly correlated materials.

A microscopic theoretical model without external parameters was
introduced in Ref. [195] to examine the proposed universal behavior.
This work investigated the thermal and electrical transport properties
of a classical Hubbard model that was modified to include a screened
Coulomb interaction. Their results accurately predicted linear-in-T re-
sistivity and demonstrated that the strong electronic interactions cre-
ate a disordered landscape of on-site potentials. As this work was
conducted in the strong coupling limit, t � U, V, this assumed that
the timescale of individual electronic motion (controlled by t) is well-
separated from that of global charge motion, or rearrangement. This
hierarchical scheme is consistent with our discovery of a collective
charge excitation in the long-range model of Chapter 3 with frequency
ωcoll ∼ 0.2t, well below the non-interacting bandwidth value, ωBW ∼
9t.

As a reminder to the reader, the
Hamiltonian of the long-range model
examined in Chapter 3 is of the form:

H =− t
Ns

∑
〈ij〉

(ĉ†
i ĉj + h.c.)

+
1
2

Ns

∑
ij

Vee(Rij, α)(n̂i − n̄)(n̂j − n̄)

In this chapter, we examine how this separation of timescales gives
rise to a novel type of transport at finite temperature. We choose to
work with a variation of our long-ranged model, introduced in Chap-
ter 3, because the continuous parameter α enables us to understand the
role of the range of interactions. The variation of our long-range model
that we work with includes local, on-site interactions (the U term from
the Hubbard model). This additionally allows us to examine the in-
terplay between local and non-local interactions and to determine how
the local interactions quench charge fluctuations at various doping lev-
els and temperatures.

The typically low frequency of collective charge fluctuations aris-
ing from strong, long-range interactions implies a long timescale for
global charge rearrangements, which therefore justifies the use of a
classical numerical method—Monte Carlo. A technical introduction to
classical Monte Carlo methods is provided for the interested reader in
Appendix C. Although the global charge arrangements can be treated
classically, the rapid, individual electronic motion should be treated
quantum mechanically. As such, we develop a mixed quantum-clas-
sical method to provide a proof-of-principle study of the impact of
quantum corrections beyond a semi-classical treatment. This approach
is similar in spirit to the extended dynamic mean field theory study
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of Ref. [152]. However, our approach includes both the spatial correla-
tions of the collective background and the quantum interference effects
of the electrons within such a background.

We begin with a brief discussion of the model under consideration.
This model shares many features with that of the previous chapter
and serves as a preliminary extension of our zero-temperature work
to finite temperature. After introducing the model, we will provide
evidence for anomalous, incoherent transport arising from long-range
interactions, in qualitative agreement with the linear-in-T resistivity
results in Ref. [195]. Following our analysis of the driving factors be-
hind the bad-metallic resistivity, we discuss the self-generated disor-
dered landscape that is responsible for slow collective charge fluctua-
tions. We provide an estimate for a region in parameter space where
these collective excitations can be treated classically, although indi-
vidual motion should still be treated quantum mechanically. Finally,
we determine how including quantum corrections beyond a semi-
classical level leads to a novel form of anomalous transport in metals,
transient localization, which was originally discovered in organic semi-
conductors [78].

4.2 Hubbard-Wigner Model

Figure 4.1: Illustration of the interacting
portion of the Hubbard-Wigner model.

We consider a two-dimensional square lattice Hamiltonian with both
on-site and long-range interactions of the form

H = −t ∑
〈ij〉,σ

(
ĉ†

iσ ĉjσ + h.c.
)
+ U ∑

i
n̂i↑n̂j↓

+
1
2 ∑

ij
V(Rij)(n̂i − n̄)(n̂j − n̄)

(4.1)

where t is the nearest-neighbor hopping matrix element, n̂i = ∑σ ĉ†
iσ ĉiσ

is the standard number operator with i indexing the lattice sites and
σ indexing the spins, σ = (↑, ↓). U is the strength of the on-site po-
tential which is activated when a site is doubly occupied. The last
term, V(Rij) = V/Rα

ij, describes the repulsive electron-electron inter-
actions as a function of the inverse distance between sites i and j with
the strength controlled by V, the value of the potential at one lattice
spacing, a. An illustration of the interactions involved in this model is
provided in Fig. 4.1.

As in Chapter 3, the parameter α controls the range of interactions,
with α = 1 corresponding to the pure Coulomb interaction and α→ ∞
the nearest neighbor interaction. The values of the potential are com-
puted via the Ewald summation technique, which ensures that the
electrostatic (Madelung) energy of periodic configurations is exactly
recovered in the classical limit, t/V → 0. The last term also includes a
background charge compensation n̄ to ensure charge neutrality. Fur-
ther details on the computation of the interaction potential can be
found in Appendix B.
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We are interested in a regime, where strong electronic interactions
are responsible for almost frozen charges. As such we study Eq. 4.1
in the weak-hopping limit, t � U, T, V. In this regime, that can for
example be reached by melting from the Wigner crystal phase, the
low-lying excitations are collective modes that correspond to slow,
self-generated disorder. These slow, collective modes arise from the
long-range Coulomb interaction and should, in principle, be found
in systems with poor screening [152]. The typical degeneracy in this
weak-hopping limit is lifted by the interaction term, V, enabling us to
investigate this system with classical Monte Carlo simulations [195].

0.0 0.2 0.4 0.6 0.8 1.0

E − E0

0

1

2

3

4

D
O

S

α

0.01

0.1

1

2

8

16

Figure 4.2: A reminder of the collective
charge modes that grow softer with in-
creasing range of interaction.

As discussed in Appendix C, the nature of the observable in ques-
tion determines which statistical mechanical ensemble (canonical or
grand-canonical) is used for calculations. In the following sections,
we proceed to present our results on anomalous transport and the
competition between local and non-local interactions in three distinct
regimes: quarter-filled (n = 0.5), lightly doped insulators (n = 0.9),
and half-filled insulator (n = 1.0). We fix the on-site potential U = 1
and report all values in units of this energy scale: T/U, V/U, etc. Un-
less explicitly stated otherwise, all results presented are on a square
lattice with L = 12 sites along one side (total number of sites, Ns =

144). Unlike exact diagonalization, classical Monte Carlo calculations
are not limited by the exponential growth of the Hilbert space which
enables us to access much larger system sizes where finite size effects
do not typically bias results and we can safely conclude that our results
reflect the thermodynamic limit.

In this chapter, we are interested in studying bad metallic trans-
port arising from long-range interactions. By definition, this transport
regime fails to be described by conventional Boltzmann theory. As
such, we will study electron transport by means of the Nernst-Einstein
relation which is an extremely general theoretical description of trans-
port in terms of the diffusion of charges. Unfortunately, we cannot
directly compute the diffusion constant of individual particles in our
Monte Carlo calculations. Therefore, we will extract this quantity in a
two-step process. First, we will compute the semi-classical expression
for the optical conductivity to second-order in small-t perturbation
theory where t is the strength of the hopping integral. This provides
us with access to the semi-classical resistivity which can be analyzed in
terms of contributions from the Drude weight and transport lifetime.

The second step consists of incorporating the resistivity in the Nernst-
Einstein diffusion relation to obtain an expression for the diffusion
constant which cannot be computed directly as it is a proportional-
ity constant. This formulation will relate the diffusion constant to the
resistivity and the charge compressibility. This second quantity is di-
rectly accessible via the use of grand canonical Monte Carlo calcula-
tions. Finally, we can compare the contributions of the compressibility
and the diffusion constant to understand factors responsible for bad
metallic transport in this diffusion-based framework.
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4.3 Incoherent high-T transport

In order to compute the resistivity, we first compute the semi-classi-
cal optical conductivity by evaluating the Kubo formula with small
t perturbation theory, as in Ref. [195]. The formal definition of the
semi-classical optical conductivity is given as

σsc(ω) = A f (ω)∑
s

e−βEs

Z ∑
i,σ

∆iσ(ω) (4.2)

where A = πa2/(h̄2vol) is a system-dependent prefactor, f (ω) =

(1 − e−βh̄ω)/h̄ω, and ∑s indicates a thermal summation over states
s with a fixed number of particles, N, for a given volume, vol. As a
reminder, all of our calculations are performed on the square lattice so
the volume is simply given as vol = L2 where L is the length along one
side. The lattice spacing a is set to unity in all calculations. The Boltz-
mann weight, e−βEs , depends on the inverse temperature β = 1/kBT
and the energy of each N-particle state, Es.

Figure 4.3: Hopping processes under
consideration in the classical optical con-
ductivity for the ~u = +x̂ unit direction.

The final part of Eq. (4.2) describes the spectral weight of all excita-
tions, or electron hops between neighboring sites,

∆iσ(ω) = ∆+
iσ(ω) + ∆−iσ(ω) (4.3)

in a fixed spin sector σ. The terms ∆+
iσ(ω) and ∆−iσ(ω) are respectively

defined as

∆+
iσ(ω) = δ

(
ω + ∆E+~u/h̄

)
n̂iσ
(
1− n̂i−~u,σ

)
(4.4)

∆−iσ(ω) = δ
(
ω− ∆E−~u/h̄

)
n̂i−~u,σ

(
1− n̂i,σ

)
(4.5)

and account for all possible hops (both forward and backward in di-
rection ~u) between site i and its neighboring site i − ~u (Fig. 4.3). The
variable ∆E±~u represents the difference in energy between the two
configurations considered in each hopping process. Overall, the semi-
classical optical conductivity, σsc(ω), is numerically implemented as
a sampling of the excitation spectrum at each Monte Carlo time step.
As we are interested in understanding the transport properties at fixed
fillings, we compute this quantity via canonical Monte Carlo simula-
tions (fixed N, V, T).

Figure 4.4: Illustration of the different
hopping processes contributing to the
current in the classical Hubbard model.
The delta peaks are shown in black,
while the broadening with V is illus-
trated in blue. The process correspond-
ing to ω = −U is not shown as it is the
opposite of that for ω = +U.

Selected results are presented in Fig. 4.5. Only the ω ≥ 0 halves
are plotted as the spectra are symmetric. In the classical Hubbard
model, which corresponds to V/U = 0 in our model, the semi-classical
optical conductivity consists of three delta functions: the Drude peak
at ω/U = 0, and the upper and lower Hubbard peaks at ω/U = ±1.
This occurs because the only possibility for a finite-frequency (ω 6= 0)
excitation via a hopping process occurs when a particle hops to/from a
site with another particle, thereby inducing an energy change ∆ = ±U
due to the change in double occupation of the sites in question. These
processes are illustrated in Fig. 4.4.

When non-local interactions are turned on (V/U 6= 0), we observe
that the classical delta functions broaden into a Drude peak (centered



96

Figure 4.5: Semi-classical optical con-
ductivity, σsc(ω), for the cases α = 1, 3
for V/U = 0.2 and T/U = 1.2 fixed.
Both cases have a large Drude peak for
the quarter-filled case, n = 0.5 (green),
and essentially identical curves for the
lightly doped (light blue) and half-filling
(purple) case.
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around ω/U = 0), and upper and lower Hubbard-like peaks (Fig. 4.5).
In other words, long-range interactions are responsible for a finite
transport lifetime, even in the classical limit. In the pure Hubbard
model, one would instead find an infinite transport lifetime for the (lo-
cal) electronic states. As we will see next, this interaction-driven broad-
ening of the Drude peak will necessarily dictate the high-temperature
trends of the resistivity. In later sections, we will take a closer look at
the precise mechanism by which these long-range interactions produce
signatures of anomalous transport.

As Fig. 4.5 shows, the quarter-filled case (light green curves) presents
a slightly higher Drude peak for both pure long-range (α = 1) and
dipolar interactions (α = 3) with respect to the lightly doped (n = 0.9)
and half-filled (n = 1.0) cases. Furthermore, the lightly doped case
(n = 0.9) essentially mirrors that of the half-filled case for both cases.
A general comparison of the size of the peaks shows that increasing
the range of interactions (decreasing α) corresponds to a narrowing of
peak width and an increase in peak height. The increased peak height
for longer-ranged interactions will correspond to lower resistivity val-
ues as we will see next. Finally, we remark that the Drude peaks have
Gaussian shapes, suggesting that the energy excitations contained in
the spectrum are essentially random [195].

From the semi-classical optical conductivity, we can compute the
semi-classical resistivity, ρsc, as in Ref. [195] by fitting the low-frequency
peak of σsc(ω) to a Gaussian,

σsc(ω) = Dτe−π(τω)2
(4.6)

where D is the Drude weight and τ is the transport lifetime. The
semi-classical resistivity is then defined as

ρsc(T) =
1
Dτ

(4.7)

and is shown in Fig. 4.6 for the pure long-range case (α = 1, full circles)
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Figure 4.6: Semi-classical resistivity, ρsc.
Values are reported for α = 1 (full cir-
cles) and α = 3 (open squares). The
Mott-Ioffe-Regel limits (black lines) com-
puted for La2−xSrxCuO4 are ρMIR = 0.93
(n = 0.5), ρMIR = 0.69 (n = 0.9), and
ρMIR = 0.66 (n = 1.0) in units of mΩ cm.

and a shorter-ranged case (α = 3, open squares) for different values of
V/U.

As a reminder, the Mott-Ioffe-Regel limit is the value of the re-
sistivity from Boltzmann theory when the scattering length is equal
to one lattice spacing, ` = a. Beyond this value ρMIR, conventional
Bloch-Boltzmann theory is no longer valid to describe electron trans-
port as the electrons can no longer be described as Bloch waves. The
black lines in Fig. 4.6 indicate estimates for the Mott-Ioffe-Regel limit
computed for a representative member of the high-Tc cuprate super-
conductor family, La2−xSrxCuO4. Details on the calculation can be
found in Appendix D. The semi-classical resistivity from our Hubbard-
Wigner model evidently exceeds the predicted Mott-Ioffe-Regel limit
for this characteristic strongly correlated system which is often mod-
eled by the conventional Hubbard model (i.e. without non-local inter-
actions) on the square lattice. Furthermore, the bad metallic resistiv-
ity trends linearly with temperature and the magnitude of the slope
increases with V/U and α, consistent with the relative sizes of the
zero-frequency conductivity peaks in Fig. 4.5.

Results for T/U < 0.2 are not shown due to convergence issues
associated with jamming at low temperatures. At low temperatures
we would expect the resistivity to diverge for the half-filled case, as
in Refs. [72, 195]. However, this is hardly relevant as we are more in-
terested in understanding the high temperature behavior and because
we can not expect this classical Monte Carlo treatment to be accurate
at low temperature. For the other fillings, the vanishing resistivity as
the temperature decreases is in qualitative agreement with the results
presented in Ref. [195], suggesting that our model correctly captures
the relevant physics due to long-range interactions and functions as a
paradigmatic model that is capable of producing transport properties
resembling those of bad metallic systems.
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Figure 4.7: Inverse Drude weight (top
row) and inverse transport lifetime (bot-
tom row) as a function of temperature,
filling, interaction strength and range.
The closed circles correspond to α = 1
and the open squares to α = 3.

In order to further compare our results with experiments, we exam-
ine the slope of our resistivity curve with experimental values. With
band structure estimates for LSCO from Ref. [196], we set t = 0.43eV
and with an approximate ratio U = 8t, we arrive at U ≈ 40, 000K. This
temperature is obviously much higher than the standard room tem-
perature (300K) at which transport in the cuprates is routinely studied.
However, we argue that it is not unreasonable to compare the orders
of magnitude of the slopes which should not change much provided
there are no crossover events between room-temperature and our high-
temperature limit [69]. From Ref. [90], we determine that the slope
for Bi2Sr2−zLazCuO6+δ with about 10% doping is 0.003 mΩ cmK−1,
whereas our results with similar doping yields 0.000105 mΩ cmK−1.
This corresponds to approximately a thirty-fold difference between the
magnitudes and hints at the fact that our classical treatment must be
missing some of the relevant physics to explain the anomalous behav-
ior in these systems. However, before exploring possible directions to
account for this, we will analyze the individual contributions to the
semi-classical resistivity in order to extract as much information as
possible at this stage.

Figure 4.8: Illustration of the comparison
of resistivity slopes between the cuprates
at room temperature and our system at
ultra high temperatures.

We next turn our attention to understanding the two components
that contribute to the semi-classical resistivity—the Drude weight and
the transport lifetime. We seek to determine if one, or both, is respon-
sible for the linear growth of the resistivity with respect to the tem-
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perature. These two observables are plotted in Fig. 4.7 for both α = 1
(full circles) and α = 3 (open squares). Across all fillings in the high
temperature limit, the inverse Drude weight displays a linear behavior
with increasing temperature, similar to that of the resistivity. We also
observe a divergence at low temperatures for the half-filled case as the
system freezes into the insulating ground state expected at T = 0K.
While the inverse Drude weight does not diverge for the lightly doped
case (n = 0.9), its rate of reduction slows down as the temperature
decreases and its low-temperature behavior should be studied more
carefully with a method that is better adapted to account for quantum
effects.

Elucidating the effect of the non-local interaction strength and the
range of interactions on the inverse Drude weight appears to be com-
plicated. For a fixed range, weaker values of interaction strength, V/U,
result in larger values of the inverse Drude weight across all fillings
at high temperatures. Interestingly, the two weakest values reported
(V/U = 0.1, 0.2) agree well for a given value of α, while the largest in-
teraction strength (V/U = 0.4) reduces the value of the inverse Drude
weight, an effect which is stronger closest to half-filling. This suggests
that non-local interactions play an increasingly important role as the
system approaches the insulating state, and aligns with early views of
Wigner and Mott that strongly correlated systems display an incipient
breakdown of screening at the approach of the Mott-metal insulator
transition.

Figure 4.9: Illustration of the spectral
shift from the low-frequency peak to
the upper peaks as the temperature in-
creases.

The inverse transport lifetime, on the other hand, remains essen-
tially constant at high temperature, T > U. This allows us to conclude
that the T-linear behavior of the semi-classical resistivity is controlled
by the Drude weight in this region. In other words, as the temper-
ature increases, the spectral weight in the low-frequency peak of the
optical conductivity is shifted to the higher frequency peaks such that
the height of the low-frequency peak (the Drude weight) drops as ∼ T
while the width (transport lifetime) remains constant (Fig. 4.9). The
inverse transport lifetime also shows a similar marked separation be-
tween weaker and stronger interaction strengths for the case with re-
duced interaction range (α = 3, open squares). This separation in
terms of interaction strength parallels the separation observed in the
inverse Drude weight, suggesting that the effect of non-local interac-
tions increases as the filling approaches n = 1.0. Overall, the transport
lifetime, or current relaxation rate, displays a weak temperature de-
pendence, which is in qualitative agreement with the results obtained
in Ref. [195].

However, as the system approaches half-filling, the transport life-
time displays a stronger response with temperature, potentially even
counterbalancing the divergence in the Drude weight to lead to an
overall linear-in-T behavior that extends all the way down to extremely
low temperatures. It is possible that there is a range of temperatures
over which the divergent behaviors of the Drude weight and the trans-
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port lifetime essentially cancel each other out, resulting in a resistiv-
ity that continues to change linearly with decreasing temperature. In
other words, there exist two distinct regimes where the T-linear be-
havior of the resistivity arises from different combinations of contribu-
tions, confirming the result found in Ref. [195].

Thus far we have demonstrated that our flexible long-range model
is capable of producing bad metallic transport in the form of T-linear
resistivities in qualitative agreement with Ref. [195]. In the frame-
work of this particular semi-classical analysis, the Drude weight and
the transport lifetime combine to produce the semi-classical resistiv-
ity and our results thus far suggest that the T-linear behavior in the
resistivity is driven by the linear change of the Drude weight with
temperature as the transport lifetime remains essentially constant at
high temperatures (T > U). Our results also suggest that two distinct
regions of bad metallic transport exist, in agreement with the conclu-
sion reached separately in Ref. [195]. Furthermore, the fact that our
resistivity results vastly exceed the Mott-Ioffe-Regel limit for a typi-
cal strongly correlated system suggests that a semi-classical picture of
transport is no longer valid and that we should revisit the theoretical
description of electronic transport in solids.

4.3.1 Nernst-Einstein description of transport

Semi-classical Bloch-Boltzmann theory typically describes electronic
transport in solids and predicts that the resistivity should grow lin-
early with respect to the temperature at high temperatures. As the
temperature increases, solids typically either melt or the resistivity
saturates at a temperature T ≤ TMIR. This limiting temperature, TMIR,
corresponds to the Mott-Ioffe-Regel limit where Bloch-Boltzmann trans-
port would predict that the typical scattering length is of the order of
the lattice spacing, ` ≈ a. However, this resistivity saturation is absent
in bad metallic systems where the resistivity continues to grow past
TMIR, into the region where the description of electrons in terms of
Bloch waves is no longer valid as it would predict that ` < a.

This breakdown of Bloch-Boltzmann theory (and most likely the
loss of coherent quasiparticle-based transport) past the Mott-Ioffe-Regel
limit invites us to revisit the theoretical description of transport. As
such, we turn to a more general theoretical description for incoherent
transport and we consider particle diffusion via Fick’s law,

jm(r) = −DNE(T)∇n(r) (4.8)

where jm(r) is the mass current, DNE(T) the temperature-dependent
diffusion constant, and n(r) the local concentration of particles [197,
198]. We note that we shall refer to the Nernst-Einstein diffusion

Adolf Fick was a physiologist who orig-
inally trained as a mathematician and
physicist. In physics, his main con-
tribution is his description of the dif-
fusive nature of particle transport. In
cardiology, he adapted this idea to de-
fine cardiac output which describes the
amount of blood pumped by the heart
in a minute [199]. constant as DNE to avoid confusion with the notation for the Drude

weight, D. We can further relate the mass current, jm(r), to the electri-
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cal current upon inclusion of a factor of the electric charge,

je(r) = e jm(r) = −eDNE(T)∇n(r) (4.9)

and turn our attention to understanding the change in particle number,
∇n(r). From thermodynamics, we know that this quantity is directly
connected to the chemical potential, µ(r), or the energy required to
add or remove a particle. We can write the chemical potential for the
general case as

µ(r) = µ0 + e φ(r) (4.10)

where µ0 is the chemical potential in the absence of an external field
and φ(r) is the electric potential. As the derivative in Eq. (4.8) will only
impact the e φ(r) term, we can rewrite the expression for the electric
current, Eq. (4.9), as

je(r) = −eDNE(T)
∂n
∂µ

∣∣∣∣
T
∇
(
eφ(r)

)
. (4.11)

We immediately recognize that we can use Poisson’s equation, E(r) =
−∇φ(r), to express the electric current in terms of the electric field,

je(r) = e2DNE(T)
∂n
∂µ

∣∣∣∣
T

E(r) (4.12)

and further use Ohm’s law to arrive at our final expression for the
conductivity,

Ohm’s law states that the optical con-
ductivity is the constant of proportional-
ity between the electric current and the
electric field, je(r) = σE(r).

σ(T) = e2DNE(T)
∂n
∂µ

∣∣∣∣
T

(4.13)

which is known as the Nernst-Einstein relation [72]. If we compare this
with the Drude formulation of optical conductivity, we see that only
the charge carriers close to the Fermi surface contribute by means of
their individual diffusivity to the electron transport in Eq. (4.13) [200,
201]. In the following sections, we will analyze each term from this
general transport equation in the context of our long-range interacting
model in order to shed more light on the origin of bad metallic behav-
ior. Via Monte Carlo calculations, we have direct access to the charge
compressibility, but not to the diffusion constant, which is a funda-
mental transport property of each particle. In order to compute DNE,
we will combine the conductivity computed in the previous section
with our charge compressibility results and examine the role of each
contribution to the resistivity.

We begin by examining the temperature dependence of the charge
compressibility,

κ =
∂n
∂µ

∣∣∣∣
T

. (4.14)

In the classical limit of the Hubbard model, we expect this quantity
to scale as κ = µ/T with temperature. Because µ is proportional to a
static potential (Eq. 4.10), we can consider the compressibility as the
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Figure 4.10: The average doping away

from half-filling, δ(µ, T) =
∣∣∣〈n〉 − 1.0

∣∣∣,
defined as a function of chemical poten-
tial, µ, and temperature, T/U. Values
are reported for the case with pure, long-
range interactions (α = 1) and V/U =
0.2 with vuc the unit cell volume. Select
values of doping are shown as contours:
δ = 0.05 (solid), 0.1 (dashed), 0.25 (dash-
dotted), and 0.5 (dotted).

redistribution of charge density in the presence of an external elec-
tric potential [72]. As this observable requires knowledge of variable
particle number, we compute it via grand canonical Monte Carlo sim-
ulations (fixed µ, V, T). The average density 〈n〉 is calculated on a fine
grid in (µ, T) space and filtered with a temperature-dependent Gaus-
sian filter. Following this step, we construct an interpolated function
n(µ, T) that we can use to establish a phase diagram in (µ, T) space
(see Fig. 4.11). Error bars were not carried through the interpolation,
but Fig. 4.11 demonstrates that the error on the raw data of n is al-
ready extremely small. The doping away from half-filling is shown
in Fig. 4.10 as a function of chemical potential and temperature. The
insulating, half-filled case is always centered around µ = 0 for all
temperatures due to our definition of the compensating charge back-
ground, n̄, and we observe that a plateau develops as the temperature
decreases (pale green region at the bottom of Fig. 4.10). This behav-
ior is in agreement with that of the classical Hubbard model which
corresponds to V/U = 0 in our model.
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Figure 4.11: Representative plot of n(µ)
for T = 0.78U with raw data points
shown in blue with black errorbars. The
black line corresponds to the interpo-
lated function of n. The green line cor-
responds to κ with the respective values
given by the axis on the right.

Examining Eq. (4.13) above, we see that the conductivity is directly
related to the compressibility, which therefore implies that the resistiv-
ity is directly related to the inverse compressibility,

ρ = e2D−1
NEκ−1 (4.15)

As we are interested in discerning the cause of linear T behavior in
the resistivity, we shall focus on understanding how κ−1 behaves with
respect to the various parameters present. The aforementioned plateau
in the number density at half-filling signals a divergence in the inverse
compressibility which is computed as the inverse of the derivative of
our interpolated n(µ, T) function (Fig. 4.12).
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Figure 4.12: Inverse compressibility as
a function of temperature, T/U, for the
classical Hubbard model (left), and our
Mott-Wigner model with α = 1 (center)
and α = 3 (right) for a fixed ratio of non-
local to local interactions V/U = 0.2.
The volume of the unit cell is indicated
by vuc.

The inclusion of non-local interactions does not distort the high-
temperature trends of the inverse charge compressibility, κ−1 ∼ T.
This can be seen upon comparison of the classical Hubbard model
(left panel of Fig. 4.12) to our results for α = 1, 3 (center, right panels
of Fig. 4.12). The non-local interactions appear to have a negligible
impact at high temperatures and indeed, the only deviations from the
classical results occur at extremely low temperatures (Fig. 4.13) at the
approach of charge-ordering.
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Figure 4.13: Low temperature examina-
tion of κ−1 for the quarter-filled case
with α = 3. The onset of charge-ordering
causes a divergence of κ−1 and occurs
when T ∼ V/2. Black indicates the clas-
sical Hubbard result.

These deviations first appear for strong values of non-local interac-
tions in the case α = 3 (Fig. 4.13) and correspond to the development
of charge-ordering at low temperatures. It is well-known that the addi-
tion of short-range interactions favors checkerboard charge-order (see
inset of Fig. 4.14) on the square lattice at quarter-filling [202,203]. This
ordering transition manifests itself in the development of a plateau at
quarter-filling (symmetrically at three-quarters filling) in the occupa-
tion function, as shown for a representative case in Fig. 4.14. As shown
in Fig. 4.13, weaker non-local interactions (smaller V/U) push the or-
dering transition to lower temperatures where the thermal fluctuations
finally give way, around the order of T ∼ V/2.

Furthermore, the ordering transition is dependent on α and we do
not yet observe the charge-ordering transition for α = 1 down to the
lowest temperatures computed (T/V = 0.05). This fact is not sur-
prising as an increased range of interaction (smaller α) reduces the
tendency to long-range order, while leaving the short-range correla-
tions intact. Wigner crystals are well-known to be fragile, especially to
collective excitations that grow increasingly soft with increasing range
of interaction [152]. This idea of a delayed transition that is dependent
on α was also seen in the phase diagram presented in the previous
chapter, where the stripe-ordering transition occur at higher values of
interaction strength as the range was decreased (see Fig. 3.20 in Chap-
ter 3).
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2

Figure 4.14: Low temperature examina-
tion of n for the quarter-filled case with
α = 3. For T = 0.1U (green), the
occupation function displays ramps at
n = 0.5, 1.0, and 1.5, signaling the on-
set of ordering. These ramps will trans-
form into plateaus as the temperature
decreases further (blue, T = 0.06U).

Overall, our results qualitatively agree with those reported in Refs. [72,
195]. First, our long-ranged model displays a linear growth of κ−1 with
temperature across all fillings, as also seen in Refs. [72,195]. As shown
in Ref. [72], we observe a divergence of the inverse charge compress-
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Figure 4.15: The inverse Nernst-Einstein
diffusion constant (top row) and the in-
verse compressibility (bottom row) as
functions of temperature. Results are
shown for different values of interaction
strength, V/U, (color guide in legend),
and interaction range, (α = 1, closed cir-
cles, and α = 3, open squares). The in-
verse compressibility is scaled by α for
greater legibility.

ibility for the half-filled case as the temperature decreases and Mott in-
sulator behavior sets in. Furthermore, the lightly-doped case (n = 0.9)
presented here also exhibits a slight increase towards half-filled val-
ues at low temperature before decreasing towards a finite value. This
trend was also observed with the inclusion of long-range interactions
in Ref. [195]. The qualitative difference between our results and pre-
vious works is that we have presented detailed results demonstrating
that our model captures charge-ordering behavior for decreasing in-
teraction range in the quarter-filled case. However, we are generally
uninterested in exploring this behavior as we are instead interested in
the high-temperature non-saturating behavior of bad metallic systems.
We have merely discussed the low-temperature behavior at length here
for the sake of completeness. Overall, we find that the inverse com-
pressibility, κ−1, grows in a linear fashion with increasing tempera-
ture, which suggests that this is the driving contribution to the linear
behavior of the semi-classical resistivity with temperature. We next
turn our attention to computing the Nernst-Einstein diffusion constant
from Eq. (4.13).

We remind the reader that the original motivation for these calcula-
tions was to study the relationship between the diffusion constant and
the compressibility in the Nernst-Einstein relation (see Eq. (4.13)),

σ(T) ∼ ρ−1
sc (T) = e2DNEκ −→ ρsc = (e2DNEκ)−1, (4.16)
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which we have rewritten in terms of the semi-classical resistivity, ρsc(T).
Combining our results for the semi-classical resistivity and the com-
pressibility, we arrive at an understanding of the inverse diffusion con-
stant, D−1

NE = κρ/e2 (see Fig. 4.15). Similar to the transport lifetime in
the semi-classical analysis previously discussed, the inverse diffusion
constant displays weak temperature dependence in the high temper-
ature regime and eventually diverges in the lightly-doped case and
insulating case as the temperature decreases. Therefore, analyzing the
resistivity in this diffusion-compressibility decomposition enables us
to conclude that the inverse charge compressibility drives the linear
growth of the resistivity with respect to temperature (see Fig. 4.15).
Intuitively speaking, one would expect the rate of diffusion to increase
with temperature as the larger thermal fluctuations should increase
the motion of the charge carriers. However, the weak temperature
dependence of the diffusion constant suggests that some underlying
mechanism must be limiting the diffusive nature of the charge carri-
ers. One such mechanism is the self-generated disorder arising from
long-ranged interactions which we will examine in more detail in the
following section.

In this section we have studied semi-classical electron transport in
terms of the Nernst-Einstein diffusion relation. As we did not have ac-
cess to the diffusion constant directly in our Monte Carlo calculations,
we first computed the optical conductivity by means of small-t pertur-
bation theory. The resistivity obtained from this computation displays
markedly bad metallic behavior, by increasing well beyond the Mott-
Ioffe-Regel limit and displaying a linear growth with temperature. The
Mott-Ioffe-Regel limit was calculated for a representative strongly cor-
related system (La2−xSrxCuO4). Further analysis of the semi-classical
resistivity suggests that the Drude weight controls the high tempera-
ture growth beyond T = U in this framework and that two distinct
regimes of bad metallic transport exist, as first proposed in Ref. [195].

Once we have established that the resistivity exceeds the Mott-Ioffe-
Regel limit, we proceeded to analyze the electron transport in the
context of charge diffusion in the Nernst-Einstein framework. This
requires knowledge of the charge compressibility and the diffusion
constant, which is not directly accessible but can be derived in com-
bination with our results for the semi-classical resistivity. We have
compared the contributions of the diffusion and the compressibility
and have determined that the inverse compressibility controls the high
temperature growth of the resistivity as the inverse diffusion remains
constant. As the diffusive nature of the charge carriers does not in-
crease with temperature, we will next consider whether the self-gener-
ated disorder from the long-range interactions impacts the diffusion.
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4.3.2 Self-generated disorder

In the previous section we have examined electron transport in systems
with long-range interactions from a diffusive standpoint. We have de-
termined that the diffusion is limited by the presence of long-range
interactions. In the present section we delve more deeply into how
the long-range interactions generate a disordered landscape that cor-
responds to slow, collective charge fluctuations. We argue that these
fluctuations are sufficiently slow that a classical treatment of them is
justified above a given temperature (T & 0.2U). Finally, we conclude
that although the timescale to change the global charge arrangements
is long, accurate descriptions of electron transport should still treat
individual hopping processes in a quantum mechanical fashion. This
topic will be explored in the following section.

Similar to our zero-temperature study in Chapter 3, we argue that
the long-range nature of the electronic interactions gives rise to an
emergent disorder which limits the diffusive nature of the charge car-
riers. Furthermore, we demonstrate that this phenomenon survives
even in the presence of local interactions of the Hubbard type. As
such, we first focus on the distribution of on-site electrostatic poten-
tials, P(φ). This quantity is computed at fixed filling via canonicalAs a reminder, the distribution of on-site

potentials, P(φi), in the quantum case
was defined as:
〈

ψ0

∣∣∣∣∣δ
(

φi −∑
j 6=i

V(Rij, α)
(
n̂j − n̄

))
∣∣∣∣∣ψ0

〉

Monte Carlo calculations (fixed N, V, T). We shall refer to φ as the
on-site electrostatic potential in this chapter to avoid confusion with
the on-site (local U) potential already present in our model. We define
the on-site electrostatic potential for a site i to be

φ̃i =
φi
V

= ∑
j 6=i

(n̂j − n̄) R−α
ij (4.17)

and the distribution P(φ̃) at finite temperature to be

P(φ̃) =
〈

δ
(

φ̃i −∑
j 6=i

(n̂j − n̄) R−α
ij

)〉

β

(4.18)

where 〈·〉β now indicates a thermal average at a fixed temperature,
β = 1/kBT.

Selected results, presented in Fig. 4.16, illustrate typical configura-
tions and their associated on-site electrostatic potentials (left and cen-
tral panels, respectively). At the chosen temperature (T/U = 0.14),
the difference in landscapes between α = 1 (long-range) and α = 3
(dipolar) is striking. The α = 3 clearly indicates short-range charge
correlations that lead to polaronic signatures in the P(φ), as evidenced
in the snapshots of the site-wise occupation and the on-site electro-
static potentials (top left and center panels, respectively). The overall
distribution (top right panel) exhibits the onset of a bimodal structure,
which will eventually settle into a hard gap with two peaks as the
system freezes into its charge-ordered ground state.

On the other hand, the pure long-range case (α = 1) presents a more
disordered landscape, as can be seen from the snapshots of the repre-
sentative configuration and its on-site electrostatic potentials (bottom
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Figure 4.16: Left panels: The site-wise oc-
cupation of a representative configura-
tion, ni . Center panels: The on-site elec-
trostatic potentials of the representative
configuration, φi . Right panels: The dis-
tribution of on-site potentials, P(φ). Re-
sults for α = 3 are shown in the top
row and for α = 1 in the bottom row.
All other parameter values (V/U = 0.4,
n = 0.5 and T/U = 0.14) are the same
for both rows.

left and center panels of Fig. 4.16, respectively). This disordered land-
scape ultimately leads to a Gaussian distribution of on-site electro-
static potentials (bottom right panel of Fig. 4.16). As the temperature
rises and thermal fluctuations increase, we can expect that the shorter-
ranged system (α = 3) will also move away from the charge-ordering
transition and explore a more uniform distribution of on-site electro-
static potentials. However, each individual snapshot will continue to
look disordered, as in the case of the pure long-range interactions (bot-
tom center panel of Fig. 4.16).
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Figure 4.17: Distribution of on-site elec-
trostatic potentials for the short-range
interacting limit, α = 32. All results are
shown for V/U = 0.1 and T/U = 1.2.

We would like to take a moment to emphasize the fact that this dis-
ordered landscape of on-site electrostatic potentials is unique to long-
range interactions. If we consider the nearest-neighbor limit of our
model (α → ∞), then we observe that the spectrum of φ̃ values is no
longer continuous. The necessarily discrete nature is shown in Fig. 4.17

for a representative case with α = 32. This range-driven discrete nature
of this spectrum impacts other observables, such as the semi-classical
optical conductivity (see Fig. 4.19). In stark contrast to the continu-
ous conductivity spectra shown earlier in Fig. 4.5 for α = 1, 3, these
spectra for α = 32 display discrete peaks located at integer multi-
ples of 0.1U. In other words, the only excitation frequencies accessible
can be easily enumerated based upon the lattice coordination number
(z = 4 for the square lattice). With increasing range of interactions,
on the other hand, the one-electron hopping processes explore on av-
erage an increasingly continuous spectrum of on-site electrostatic en-
ergies (Fig. 4.16), resulting directly in continuous conductivity spectra
(Fig. 4.5).

To further explore the effects of the long-range interactions on the
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Figure 4.18: Fluctuations of the on-site
electrostatic potentials, δφ, as a func-
tion of T/U. Results are shown for the
long-range case (α = 1, solid lines) and
a shorter-ranged case (α = 3, dashed
lines). The cutoff line (gray) indicates
when the charge fluctuations are re-
duced to the order of half the bandwidth
and provides an estimate for the cross-
over between the classical and quantum
behavior of the collective charge fluctua-
tions.
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system, we compute the fluctuation of the on-site electrostatic poten-

tials, δφi =
√
〈φ2

i 〉 − 〈φi〉2. This provides a qualitative measure of the
self-generated electrostatic disorder. All results in Fig. 4.18 are com-
pared with a cutoff value (gray line) that provides an estimate for the
crossover between classical and quantum behavior for the collective
charge fluctuations. The cutoff line (gray) indicates when the charge
fluctuations become comparable with half the bandwidth

δφ/V ∼W/2 = 4t (4.19)

for a representative choice of quantum fluctuations, t = 0.1U, and rep-
resentative bandwidth, W = 8t. In other words, this cutoff provides us
with an estimate of the region in parameter space where all electronic
states become incoherent, enabling a classical treatment. From this
approximation, we can reasonably assume that in the lightly-doped
and half-filled cases we can treat the charge fluctuations classically
for temperatures T & 0.2, which corresponds to the high-temperature
regime where the resistivity continues to climb well past expected
Mott-Ioffe-Regel limits (see Fig. 4.6). We argue that the classical treat-
ment of collective motion should be appropriate at all temperatures in
the quarter-filled case, a question which was left open in a previous
study of Coulomb glasses [110].
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Figure 4.19: Semi-classical optical con-
ductivity for the short-range interacting
limit, α = 32. All results are shown for
V/U = 0.1 and T/U = 1.2.

The nearest-neighbor limit for δφ/V
is straightforward to determine in the
charge-ordered phase for n = 0.5. This
phase displays a checkerboard order,
with every other site occupied by an
electron. This leads to 〈φi〉 = 2V, 〈φ2

i 〉 =
8V2 and δφ/V = 2.

As shown in Fig. 4.18, the choice of interaction type also has a pro-
found impact on the fluctuations of the on-site electrostatic potential
for much of the temperature range. If we first consider the quarter-
filled case (n = 0.5), we observe the charge-ordering transition as
δφ suddenly increases at low temperatures, for both the pure long-
range (α = 1, full lines) and the dipolar (α = 3, dashed lines) cases.
The strength of the non-local interaction plays a role in this transi-
tion as higher values of V/U correspond to transitions at higher tem-
peratures, as to be expected from the previous signatures of charge-
ordering observed in the charge compressibility (Fig. 4.13). The tran-
sition also occurs at higher values of T/U for α = 3 than for α = 1,
in agreement with the fact that systems with short-ranged interactions
are more susceptible to charge-ordering. In other words, long-range
interactions reduce the energy scale, and thereby the temperature, for
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Figure 4.20: The inverse transport life-
time scaled with the electrostatic charge
fluctuations for α = 1 (full circles) and
α = 3 (open squares). Although charge
fluctuations are quenched by U in all
panels, the low temperature behavior is
clearly dependent on the filling.

charge-ordering transitions as previously discussed.
If we next consider the lightly-doped case (n = 0.9), we again ob-

serve that the values of δφ remain segregated by values of α across
much of the temperature range. As the temperature decreases, the
values appear to converge to a finite value, which is most likely due
to the effect of the on-site potential term, U, quenching charge fluctu-
ations. Determining the value of δφ/V at convergence requires more
intensive studies at low temperatures, which would rapidly become
prohibitive using classical Monte Carlo calculations due to exponen-
tially long sampling times. Finally, in the half-filled case (n = 1.0), the
interaction range again plays a role in the values of δφ/V across most
temperatures before all charge fluctuations are eventually quenched at
low temperature as the system approaches its insulating ground state.
This quenching occurs regardless of interaction range and signals that
the Mott physics dominates in this low-temperature region. However,
the role of non-local interactions remains relevant for temperatures
T & 0.2U. Overall, our results have shown that long-range interac-
tions give rise to self-generated disorder at finite temperature, even in
the presence of a local potential.
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Figure 4.21: The inverse diffusion con-
stant scaled with the electrostatic charge
fluctuations for α = 1 (full circles) and
α = 3 (open squares).

We can utilize the fluctuation of the on-site electrostatic potentials to
characterize how the previously computed contributions to the semi-
classical resistivity depend on the charge fluctuations. In fact, the in-
verse transport lifetime scales with δφ/V across most of the temper-
ature range, as shown in Fig. 4.20. In particular, in the quarter-filled
case, the ratio τ−1/δφ is almost universal, suggesting the relevance
of the interplay between U and V. It is important to remark that the
universal behavior appears for small values of α. Similarly, the inverse
diffusion constant calculated from the Nernst-Einstein relation scales
with δφ/V (see Fig. 4.21), suggesting that the relatively constant charge
fluctuations control the limited behavior of the diffusion constant (i.e.
its constant nature) across the range of temperatures explored. With
these observables constant, then the other contributions are unchecked
and dictate the growth of the observed bad metallic resistivity.

Overall, we have demonstrated that long-range interactions give rise
to a disordered landscape of on-site electrostatic potentials. We have
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computed the average fluctuation of these potentials and used this
quantity to estimate a region in our parameter space where global
charge fluctuations can be treated as classical objects. In order to un-
derstand how the disordered landscape impacts electron transport, we
have explored how the transport lifetime and diffusion constant scale
with the fluctuation of the on-site electrostatic potentials. We have
discovered that these quantities scale in a constant manner with the
fluctuation at high temperatures, thereby suggesting that this quan-
tity is responsible for limiting the diffusion of charges. In the next
section, we will examine transport in a framework that goes beyond
semi-classical treatment revealing the importance of localization pro-
cesses in the emergent disordered potential of the electrons.

4.4 Anomalous quantum transport: transient localization

At this point we have established that our long-range interacting model
provides a microscopic description of bad-metallic resistivity. In par-
ticular, we have shown that the long-range interactions generate dis-
ordered landscapes of electrostatic on-site potentials, leading to large
values of the resistivity. The fluctuations of these potentials constrain
the behavior of the charge diffusion at high temperature where their
energy scale is much larger than that of a typical bandwidth, sug-
gesting that the fluctuations in local field (or global charge rearrange-
ments) can be treated classically across much of the temperature range
accessible in classical Monte Carlo. We would now like to address
the question of how corrections beyond a semi-classical treatment im-
pact the observed bad metallic transport, thereby connecting our high-
temperature study with our zero-temperature exact diagonalization
results.

Figure 4.22: Illustration of displaced
Drude peak occurring because of re-
duced diffusion of the carriers.

Going beyond a semi-classical treatment of the individual electron
motion will enable us to determine if the long-range interactions are
capable of driving localization processes, which could potentially re-
solve the mismatch of resistivity slopes as discussed earlier. Further-
more, disorder-driven localization processes have been proposed as a
mechanism responsible for the observation of so-called displaced Drude
peaks. This phenomenon has been observed in several bad metal-
lic systems, including the ruthenates [204, 205], cobaltates [206, 207],
cuprates [208–212], vanadates [213, 214], manganates [215, 216], nick-
elates [60], and organic conductors [217]. However, most theoretical
attempts to understand bad metallic systems have failed to reproduce
this behavior as these approaches relied on the conventional Hubbard
model [72, 80, 218]. This model only accounts for local electronic in-
teractions which are incapable of generating continuously disordered
electrostatic landscapes. In an attempt to answer this important open
question, we provide here an analysis of the origin of displaced Drude
peaks, and bad metallic transport in general, in the context of disorder-
driven localization caused by long-range interactions.
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4.4.1 Mixed quantum-classical treatment

Monte Carlo calculations are devised for numerical studies of clas-
sical systems, which is suitable for the treatment of the slow, global
charge rearrangements. However, we must develop a workaround to
include the effects of quantum corrections beyond a semi-classical level
in our calculations. As such, we work in a basis of single-particle
(one-electron) states,

{
|iσ〉

}
, where i represents the site of the par-

ticle and σ its spin sector. We construct a Hamiltonian in this basis
that details the possible kinetic processes and interparticle interactions,
H1body = Hkin + Hint. The kinetic processes for a state in a fixed spin
sector are described by the kinetic Hamiltonian,

Hkin = −t ∑
i,σ

∑
〈j〉

(
ĉ†

iσ ĉjσ + h.c.
)

(4.20)

where t represents the magnitude of the hopping integral, or the quan-
tum fluctuations, and the summation over 〈j〉 indicates a summation
over the nearest neighbors of site i. The interacting portion of the
Hamiltonian is constructed from the on-site (local) and on-site electro-
static (non-local) potentials of the configuration under consideration
in each Monte Carlo time step,

Hint = U ∑
i,σ

((
n̂iσ − 0.5

)
+ φi

)
, (4.21)

where φi = ∑j Vijn̂j. The one-body Hamiltonian is diagonalized ex-
actly to obtain the corresponding single-particle energies,

{
εi
}

, which
are then used (in conjunction with the density of the configuration) to
determine the chemical potential according to the Fermi-Dirac distri-
bution,

n = ∑
i

1
eβ(εi−µ) + 1

. (4.22)

Finally with the chemical potential, the quantum optical conductivity
can be computed as

σq(ω) = π ∑
ij

f (εi)
(

1− f (ε j)
)1− e−β∆ij

∆ij

∣∣∣ 〈j|Jx|i〉
∣∣∣
2
δ
(
ω− ∆ij

)
(4.23)

where f (εi) = 1/
(
eβ(εi−µ)+ 1

)
is the Fermi-Dirac distribution of eigenen-

ergy εi, ∆ij = ε j − εi is the energy difference between the two config-
urations involved in the hopping process, and Jx is the current matrix
that describes nearest-neighbor hopping processes in the x̂ direction.
It is important to remark that the single-particle Hamiltonian, whose
terms are described in Eq. 4.20 and 4.21, are only used to compute
the optical conductivity and are not implemented in the acceptance
criterion underlying the classical Monte Carlo scheme.

Selected results are presented in Fig. 4.23. We choose two values of
the quantum fluctuations, t/U, with t/U = 0.1 chosen as the repre-
sentative ratio for strongly correlated materials and t/U = 0.01 chosen
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Figure 4.23: Quantum optical conductiv-
ity results for α = 1 at T/U = 1.2 and
two different values of quantum fluc-
tuations, t/U = 0.01, 0.1. The classi-
cal results (green) are plotted for com-
parison. A Gaussian filtering of δ =
0.002ω has been applied. The top row
shows the entire spectrum (ω > 0) while
the bottom row focuses on the low-
frequency region, illustrating how the
addition of quantum fluctuations sup-
presses the weight around ω = 0 and
pushes it to higher values.
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to understand how the classical result is approached in the limit t→ 0.
Due to the increased computational cost of exactly diagonalizing a ma-
trix of dimensions 2L2× 2L2 at each Monte Carlo time step, the results
presented correspond to a square lattice with side length L = 6. At the
time of writing, preliminary calculations performed on systems with
L = 12 suggest that the results do not suffer greatly from finite size ef-
fects. The confirmation of this point is still an open matter that requires
a proper finite-size study. We observe that the inclusion of quantum
corrections broadens the finite frequency peaks previously seen in the
classical optical conductivity spectra (Fig. 4.5), but does not shift them
to different values of ω/U. The classical results are also plotted in
Fig. 4.5 for comparison. Most importantly, we notice a decrease in the
zero-frequency weight of σq, with the spectral weight being shifted to
the vicinity of small, finite frequency. In other words, the inclusion
of quantum fluctuations suppresses the zero-frequency peak, leading
to the development of a displaced Drude peak. As discussed in the
introduction of this section, this phenomenon has been observed in
several bad metallic systems, but has escaped general theoretical un-
derstanding thus far. In the following part, we examine how transient
localization can act as a mechanism for these displaced Drude peaks.

4.4.2 Displaced Drude peaks

Figure 4.24: Illustration of transient lo-
calization. The carriers travel through a
disordered landscape created by lattice
vibrations and localize within each land-
scape on a timescale τ (blue). With a
timescale t ∼ ω0, the landscape changes
and the build-up of quantum corre-
lations leading to localization repeats.
The localization length is denoted by L
(green).

Recently, it was proposed that this displaced Drude peak phenomenon
arises from a transient localization scheme where a source of disorder
induces localization in the charge carriers, thereby causing a larger re-
sistivity than predicted by semi-classical Boltzmann theory [77]. This
transient localization theory was originally developed in the context of
organic semi-conductors. These systems are comprised of molecules
with a large molecular weight, leading to very slow lattice vibrations,
ω0 ∼

√
K/M, which act as strong electron scatterers. Within the
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framework of Boltzmann theory, these strong scatterers would give
rise to a mean free path that is of the order of (or even shorter than)
the intermolecular spacing, ` = a, which corresponds to the Mott-Ioffe-
Regel limit where Bloch-Boltzmann theory is no longer valid [78].

As shown in Ref. [78], the transient localization of the charge carri-
ers occurs on a timescale smaller than that of the disorder, tloc < ω−1

0 .
In other words, on the timescale of disorder (lattice vibrations in the
case of organic semi-conductors) the electrons explore a disordered
landscape and their quantum correlations enable Anderson localiza-
tion. However, upon the fluctuation of disorder, the disordered po-
tential landscape changes and the localization from the previous land-
scape is destroyed as the destructive interference pattern from the pre-
vious disordered potential no longer exists [219]. The average distance,
or spread, that a carrier can travel before becoming localized is charac-
terized by a localization length, L. This concept of fluctuating disorder
leading to localization is illustrated in Fig. 4.24. This transient local-
ization description of organic semi-conductors was later incorporated
into unifying theoretical framework that smoothly connects the local-
ization (strong disorder) limit with the semi-classical (weak disorder)
limit [79].

Following the establishment of this consolidated framework, this
theory was applied to a many-body electronic lattice model at half-
filling with generic electron-boson interactions [77]. In this setting,
the slow bosonic fluctuations caused a displaced Drude peak by re-
ducing the carrier diffusion, a localization effect that was only prop-
erly accounted for by a quantum treatment of the electronic correla-
tion. The appearance of transient localization in this low-dimensional
metallic model encourages us to consider whether the self-generated
landscape from long-range interactions can act as a source of disorder
that reduces carrier diffusion, thereby leading to anomalous transport
as quantum correlations build up.

4.4.3 Beyond semi-classical transport

Indeed, the suppression of the zero-frequency weight of σq(ω) (previ-
ously shown in the bottom row of Fig. 4.23) suggests that long-range
interactions can reduce carrier diffusion in the absence of external
sources of disorder, thereby creating a displaced Drude peak. How-
ever, our hybrid quantum-classical approach completely suppresses
the zero-frequency value. This occurs because the electronic problem
is solved in an effectively static random background which means that
all states are localized and the conductivity vanishes identically. We
can only restore a finite value of σq,0 if we reestablish the energy scale
of the slow fluctuations [193, 220, 221]. This can be achieved by ap-
plying a Lorentzian broadening to our conductivity spectra in order
to obtain a finite value σq,0 that can be used to define the quantum
resistivity, ρq = 1/σq,0. We perform a convolution of the optical con-
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Figure 4.25: Left: Plot of σq(ω/t) (main
panel) demonstrating the suppression
near ω/t = 0 with the inclusion of quan-
tum effects. A Gaussian filter of δ =
0.05t was applied to the semi-classical
(gray) and quantum (dark blue) curves.
Inset shows how the Lorentzian con-
volution changes with the broadening,
γ/t, in the low-frequency regime. Right:
Comparison of the zero-frequency val-
ues of the semi-classical (σsc,0) and quan-
tum (σq,0) conductivities as a function of
γ/t. Parameter values (α = 1, t/U =
0.1, V/U = 0.2, n = 0.5 and T/U = 0.6)
are the same for both panels.
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ductivity with a Lorentzian function, L(ω− x, γ), as

σ(ω) =
∫ +∞

−∞
dx σq(x)L(x−ω, γ) (4.24)

where γ is the broadening and is of the order of the energy scale of the
relevant source of disorder in the system. This broadening approach
provides estimates very similar to those obtained from the relaxation
time approximation developed in the original theory of transient lo-
calization, but originates from a different physical motivation [193].

The effect of this broadening approach to yield a finite value of σq,0

is shown in Fig. 4.25. The left panel compares the low frequency re-
gion between the semi-classical conductivity (gray) and the quantum
version for various degrees of broadening, γ. The inset demonstrates
that as the broadening, γ, increases, the suppressed zero-frequency
weight rises toward the semi-classical values. The right panel shows
in more detail how the zero-frequency value, σq,0, increases with the
broadening. This value never fully saturates to that predicted by the
semi-classical treatment of the optical conductivity and instead sat-
urates for γ ∼ 0.3t, which is still above the estimated value of the
frequency of the slow charge fluctuation, ω ∼ 0.2t, as estimated from
the results in the previous chapter. It is important to note that this
broadening procedure is not valid when γ exceeds the energy scale of
the slow disorder, which is labeled by the dashed blue line in Fig. 4.25.

For the values of the quantum resistivity reported in Fig. 4.26, we se-
lected a broadening of γ = 0.2t as this corresponds to the frequency of
the peak of collective charge excitations observed in the spinless, zero
temperature version of our model (ωcoll ∼ 0.2t, see Chapter 3), thereby
providing a reasonable order-of-magnitude estimate. At low tempera-
tures, we observe that the resistivity stops decreasing with decreasing
temperature for the half-filled case, but we attribute this behavior to
the onset of jamming. As shown in Fig. 4.26, our quantum-classical
hybrid approach predicts even more anomalous transport representa-
tive of bad metallic systems. In fact, the reduction of diffusion of the
charge carriers by the presence of almost static, self-generated disorder
further drives the quantum resistivity past the Mott-Ioffe-Regel limit,
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Figure 4.26: Quantum resistivity, ρq,
compared with the semi-classical resis-
tivity, ρc, for α = 1 and V/U = 0.1 on
the 6 × 6 square lattice. Results (solid
lines with full circles) are plotted for dif-
ferent values of the filling. The estimates
for the Mott-Ioffe-Regel limit of each fill-
ing are provided (solid lines, right leg-
end). The color scheme for the estimates
is the same as for the resistivity curves
(left legend).

the estimates of which are given in solid lines in Fig. 4.26.
Furthermore, this approach provides us with a mechanism to un-

derstand the displaced Drude peaks observed in many bad metallic
systems. We turn our attention to understanding the scaling behavior
of the displaced Drude peaks, shown in Fig. 4.28. The top row demon-
strates how the peak location evolves as a function of temperature and
typical energy scales. The open squares correspond to the limiting
classical case, (t/U = 0.01, open squares), and we see immediately
from the top row of Fig. 4.28 that the displaced Drude peak saturates
at 2t, as predicted in Ref. [77,222]. On the other hand, the frequency of
the displaced Drude peak representative of typical strongly correlated
systems (t/U = 0.1, full circles) displays a growth with the tempera-
ture towards this maximum value, ωpeak = 2t.
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Figure 4.27: The frequency of the dis-
placed Drude peak as a function of
bosonic disorder, s, in the Holstein
model (generic electron-boson interac-
tions). Adapted from Ref. [77].

Ref. [77] additionally predicted that the peak should scale univer-
sally with the amount of disorder associated to the bosonic modes
(see Fig. 4.27). In our particular model, this quantity is represented by
the fluctuation of the on-site electrostatic potentials, δφ, introduced in
the previous section. We therefore anticipate that the displaced Drude
peak will demonstrate a universal scaling behavior with δφ. Indeed,
the scaling of ωpeak shown in the bottom row of Fig. 4.28 strikingly
resembles that observed in Ref. [77], despite the fact that the models in
question are very different in nature. In other words, the long-range
interactions cause a disordered landscape of on-site electrostatic po-
tentials with the amount of disorder quantified by δφ. This disorder
triggers a response in the electronic behavior such that ωpeak reflects
the strength of the localization effects induced by this source of disor-
der. This method of disorder-induced localization therefore provides
a long-sought-after universal mechanism for bad metallic behavior.

We observe differences in scaling as a function of the filling in the
bottom row of Fig. 4.28, which indicates that the local (Hubbard U)
potentials also contribute to the disorder. This contribution is not con-
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Figure 4.28: The frequency of the dis-
placed Drude peak for α = 1 as a func-
tion of temperature (top row) and fluc-
tuations of on-site electrostatic potentials
(bottom row). Open squares correspond
to the limiting case t/U = 0.01 while full
circles correspond to the strongly corre-
lated case t/U = 0.1.

tained in our fluctuation of disorder, δφ, and we predict that the fre-
quency should scale on a universal curve if plotted as a function of the
fluctuation of all potentials,

δΦ2 = δφ2 + δφ2
U (4.25)

where δφ2
U = U2(〈n2

iσ〉 − 〈niσ〉2
)
. However, confirmation would re-

quire sampling of this last quantity, δφ2
U , which has not been per-

formed yet. Overall, our results provide preliminary evidence for a
universal mechanism of bad metallic behavior arising from long-range
interactions. This will need to be confirmed by a fully quantum treat-
ment such as the finite temperature Lanczos method. This point is
under active consideration and will be addressed in more detail in
Chapter 5.

Finally we should stress that this procedure is not self-consistent be-
cause the quantum corrections are not included directly in the Monte
Carlo sampling of the phase space. Their inclusion is not straight-
forward as the solution to the one-body Hamiltonian with external
disorder P(φ) already assumes that the system is at thermodynamic
equilibrium. Therefore, these single-particle energies cannot be used
in the acceptance term that governs how the Markov chain samples
through phase space. The appropriate formulation is still under active
consideration.
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4.5 Conclusions and summary

In this chapter, we have analyzed the role of long-range interactions
in the context of anomalous electrical transport. With classical Monte
Carlo calculations, we have examined a spinful model with long-range
interactions and details on this numerical technique can be found in
Appendix C. Initially, we investigated incoherent transport in the high
temperature limit and demonstrated that the electrical resistivity of
our long-range model grows linearly with temperature and greatly ex-
ceeds the predicted Mott-Ioffe-Regel limit for a representative strongly
correlated system. Furthermore, a large difference upon comparison
of the experimental value of the resistivity-temperature slope to that
computed from our model implied that we revisit the theoretical un-
derstanding of metallic transport in these systems. Following this com-
parison, we studied charge transport in the Nernst-Einstein diffusion
framework and determined that charge diffusion is limited by the fluc-
tuations of the on-site electrostatic potentials. This last step was made
possible by incorporating our knowledge on collective charge fluctua-
tions obtained in Chapter 3.

Motivated by the idea that a separation of timescales exists be-
tween rapid, individual electron motion and slow, collective fluctua-
tions, we examined how quantum corrections beyond a semi-classical
treatment impacted the transport properties of our system. By treat-
ing the individual electron motion quantum mechanically, we were
able to demonstrate that the disorder generated from the long-range
interactions causes transient localization of the charge carriers, a phe-
nomenon also found in organic semi-conductors [78]. The key concept
underlying the anomalous behavior observed in both of these systems
is that a proper theoretical description can treat the sources of disor-
der as classical objects, while the individual carrier motion should be
treated quantum mechanically.

The decreased diffusion of charge carriers gave rise to resistivity re-
sults that were even more anomalous than those previously computed
in the semi-classical framework. Furthermore, we showed that long-
range interactions also act as a microscopic mechanism for the devel-
opment of displaced Drude peaks, another signature of bad metallic
behavior in certain systems, and we provided preliminary evidence
suggesting that the frequency of the peak obeys a universal scaling
law with respect to the strength of the disorder present in the system,
as previously shown for a generic electron-boson interaction model in
Ref. [79].

We emphasize that these effects are missed completely by models
that reduce electronic interactions to only on-site or nearest-neighbor
contributions. They are also missed in treatments such as DMFT that
completely neglect localization (vertex) corrections in the evaluation of
the current-current correlation function. Overall, the work presented
in this chapter has served as a first step towards extending our zero
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temperature work to include thermal effects and in doing so, we have
discovered that long-range interactions act as a microscopic mecha-
nism for anomalous transport at finite temperatures. In summary,
these results pave the way for a novel theoretical understanding of
anomalous transport in materials with weak screening.



Chapter 5:
Conclusions





Chapter 5
Conclusions

5

This dissertation has examined the impact of long-range interac-
tions in lattice models of low-dimensional strongly correlated systems
and firmly establishes this subject as an exciting avenue of research
with many questions to be explored in the future. Over the past sev-
eral decades, effective fermionic lattice models have commonly been
employed in investigations of strongly correlated electronic behavior.
These models typically begin from the assumption that the long-range
Coulomb interaction between electrons can be reduced to an effective,
short-range interaction due to efficient screening processes. In partic-
ular, the archetypal Hubbard model, which functions as the minimal
model of electronic correlation with only local (on-site) interactions,
has proven very successful in explaining strongly correlated phenom-
ena such as the Mott metal-insulator transition [16, 18].

There are only a few analytical solutions to this simple model [19,
20], which has triggered a massive development in numerical meth-
ods capable of studying strongly correlated systems in the past several
decades. Despite the immense progress made in this direction, the ex-
istence of several phenomena that escape general theoretical descrip-
tion hints at the fact that we might be reaching the limit of informa-
tion accessible from the Hubbard model and other conventional lattice
models. Notably, an explanation for the anomalous transport proper-
ties observed across a broad range of materials represents one of the
most important open questions in modern condensed matter physics.
These properties include the growth of the electrical resistivity beyond
the Mott-Ioffe-Regel limit where the Bloch-Boltzmann picture breaks
down, anomalous scaling laws of the resistivity around this region,
and the development of displaced Drude peaks in some cases. Studies
of the Hubbard model are unable to fully explain this anomalous, or
bad-metallic, behavior which suggests that a crucial element must be
missing from the model.

The fact that these bad-metallic signatures are seen in a variety of
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strongly correlated materials further suggests that this missing ele-
ment must have a general nature. In this thesis, we have focused our
efforts on understanding the effects of one proposed mechanism in
particular—long-range electronic interactions. Indeed, several experi-
mental and theoretical works have hinted at the potential relevance of
this mechanism in a number of systems. For example, although the
cuprate family of superconductors is arguably the best studied group
of strongly correlated materials, the Hubbard model remains unable to
accurately characterize its stripe order. Ref. [88] proposed that this fail-
ure was due to the lack of long-range interactions and even provided
evidence that the expected contribution of the long-range interactions
would be of the order of the energy scales seen in the competing
ground states. Another example of systems with important long-range
contributions would be the family of transition metal dichalcogenide
heterostructures, which recently were shown to host Wigner crystal
phases at several fractional filling values [45, 46, 120]. These clean ma-
terials form Moiré superlattices with narrow bandwidths which render
them an ideal experimental platform in which to analyze the physics
of strong, long-range interactions.

Motivated by these examples (and several others), we set out to ex-
amine the impact of long-range interactions by means of a spinless
model at zero temperature. The analysis of this model is the focus of
Chapter 3 of this thesis and it has been studied with exact diagonal-
ization calculations. This powerful numerical technique grants us with
complete control over the microscopic degrees of freedom including
the form of interactions. Chapter 2 provides a technical introduction to
this methodology. In particular, this chapter focuses on strategies that
we employ in order to overcome the main limitation of this technique
which is finite size effects that arise from being restricted to studying
small system sizes due to the exponential growth of the Hilbert space.
These strategies include the use of twisted boundary conditions to
minimize finite size effects in the kinetic portion of the Hamiltonian
and the use of the Ewald summation technique to compute electro-
static potentials representative of the thermodynamic limit.

With these techniques implemented, we proceed to inspect the novel
correlated behavior arising from our long-range interacting spinless
model in Chapter 3. Before presenting the phase diagram in terms
of the interaction range, α, and strength, V/t, we predict the exis-
tence of the phases contained within and their respective transitions
based upon results from the classical limit (V/t → ∞) and the limit
of nearest-neighbor interactions, α → ∞. The numerical results ob-
tained for the phase diagram agree remarkably well with these ana-
lytical estimates and additionally provide evidence that the finite size
effects are well under control. The phase diagram is reproduced here
in Fig. 5.1 and contains a novel correlated metal phase in the long-
range (small α) region. We focus on the case of α = 1, corresponding
to the pure Coulomb interaction and measure the presence of strong
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Figure 5.1: Phase diagram of the long-
range spinless model studied in Chap-
ter 3.

electronic correlations throughout the metallic phase by means of the
quasiparticle weight, Z. We further demonstrate that a pseudogap de-
velops in the single-particle spectral function upon the approach to
the metal-insulator transition, behavior that is completely unrelated
to the conventional Mott-Hubbard metal-insulator transition. We em-
phasize that this correlated pseudogap phase arises directly from the
disorder of electrostatic potentials which is self-generated by the long-
range interactions. Furthermore, we draw a parallel between the ob-
served pseudogap and the Coulomb gaps seen in disordered classi-
cal systems. Finally we examine the nature of the collective charge
fluctuations, discovering frustration due to competition among several
competing charge orders at the approach of the metal-insulator transi-
tion. We conclude that the long-range interactions generate disordered
landscapes that lead to slow charge fluctuations that we anticipate will
have a profound impact on electrical transport at finite temperatures.

The analysis of the role of long-range interactions in anomalous
transport constitutes the topic of Chapter 4. In this chapter, we study
a spinful model with long-range interactions by means of classical
Monte Carlo calculations. Details on this numerical technique can
be found in Appendix C. We initially study incoherent transport in
the limit of high temperature where we observe that our resistivity
results grow linearly with temperature and exceed the expected Mott-
Ioffe-Regel limit for a representative strongly correlated system (see
left panel of Fig. 5.2). Additionally, we study charge transport in
the Nernst-Einstein diffusion framework and incorporating ideas from
Chapter 3, we determine that charge diffusion is limited by the fluctu-
ations of the on-site electrostatic potentials.
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Figure 5.2: Examples of the resistivity
violating the Mott-Ioffe-Regel limit for
a representative strongly correlated sys-
tem (left panel). Scaling of the displaced
Drude peak with the strength of dis-
order from the long-range interactions
(right panel).
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Motivated by comparison with experimental values and the idea
that a separation of timescales exists between rapid, individual elec-
tron motion and slow, collective fluctuations, we proceed to address
the question of how corrections beyond a semi-classical treatment im-
pact the observed bad metallic transport. This serves as a first step to-
wards connecting our zero temperature work with our discovery that
long-range interactions act as a microscopic mechanism for anomalous
transport at finite temperatures. By treating the individual electron
motion quantum mechanically, we are able to demonstrate that the
disorder generated from the long-range interactions leads to a phe-
nomenon known as transient localization. This causes a reduction in
the motion of the charge carriers, leading to even more anomalous be-
havior than previously observed. Furthermore, we demonstrate that
long-range interactions also act as a microscopic mechanism for the
development of displaced Drude peaks and provide preliminary ev-
idence suggesting that the frequency of the peak obeys a universal
scaling law with respect to the strength of the disorder present in the
system, as shown for a generic electron-boson interaction model in
Ref. [79]. An example of this scaling with the disorder (as measured
by the fluctuations) is shown in Fig. 5.2.

Overall, the work presented in this thesis opens the door for many
new, exciting avenues of research to be explored in the future. We have
conducted a thorough study of the physics of long-range interacting
electrons at zero temperature via exact diagonalization, discussed in
Ch. 3. In addition, we have investigated the high temperature behav-
ior of long-range interactions in conjunction with local, on-site interac-
tions via our classical Monte Carlo work presented in Ch. 4. This work
in particular has attempted to draw connections with physical systems
where appropriate. However, we recognize that this classical method
is inherently limited and that there is still a gaping need to understand
transport properties at intermediate temperatures.
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As discussed in Ch. 4, proper treatment of quantum fluctuations
plays an important role in determining the mechanisms underlying
electronic transport in strongly interacting systems. Therefore, ex-
tending the zero-temperature exact diagonalization machinery to fi-
nite temperature would be a logical first step towards bridging the
gap between our two main works as it would allow for investigation
of finite-temperature transport properties with exact quantum treat-
ment. This extension is conceptually straightforward and consists of
defining observables in terms of thermal averages,

〈A〉β =
1
Z

NH
∑
n
〈ψn|Â|ψn〉 e−βEn (5.1)

where the summation is now performed over all many-body states |ψn〉
for a given inverse temperature, β = 1/kBT, as opposed to simply
the ground state |ψ0〉. Unfortunately, the computational cost of this
summation is already prohibitive for spinless systems, whose Hilbert
spaces grow as 2N where N is the number of sites.

Additionally, meaningful connection with real, physical systems
would necessitate that one properly account for the presence of spin
in calculations at both zero and finite temperature. Moreover, our
results from Chapter 4 indicate that the interplay between local and
non-local interactions plays an important, and currently unexplained,
role in the transient localization mechanism that drives the observed
anomalous transport. Unfortunately, the inclusion of the spin degree
of freedom would render the diagonalization and summations even
more prohibitively expensive as the Hilbert space of spinful systems
grows as 4N , as discussed in Chapter 2.

One attempt to circumvent this finite-size limitation that the group
has already begun to implement is the use of a projector-based method.
This approach essentially projects out states from the Hilbert space
that are not anticipated to contribute much to the thermal averages
based upon high energetic costs associated with the spin degrees of
freedom. In more formal terms, the Hamiltonian is written using
Gutzwiller projector operators that enforce the single-occupancy con-
straints, or in other words, the U = ∞ limit [223, 224]. While this
projector-based method would certainly reduce the size of the Hilbert
space under consideration, computing a thermal summation over all
states in the Hilbert space still remains a daunting—and computation-
ally expensive—task.

✓

×
Figure 5.3: Illustration of the projec-
tor method. Setting gi = 0 (projector
weight), states with double occupation
(D̂i = 1) on a any site i are automatically
projected out of the Hilbert space.

Therefore, the best approach moving forward would be to imple-
ment the finite-temperature Lanczos technique. This technique em-
ploys Lanczos diagonalization to diagonalize the Hamiltonian matrix
and then implements a cutoff in terms of states involved in the ther-
mal summation. One single summation over M states where M� NH
cannot possibly be expected to yield an accurate estimate of a thermal
average, except perhaps in the limiting case where T → 0 and only
a few states contribute to the ground state. Therefore, a sampling
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over starting vectors, |r〉, for the Lanczos diagonalization routine is
implemented. This sampling is similar to the statistical sampling of
the classical Monte Carlo method and results in thermal averages of
observables being computed as

〈A〉 = 1
Z

NH
R

R

∑
r=1

M

∑
m=1

e−βEr
m
∣∣∣ 〈r|ψr

m〉
∣∣∣
2
Ar

m (5.2)

where Z is the partition function, NH is the total number of states
in the Hilbert space and R is the number of samples over random
initial states [139]. Moreover, it has been shown that increasing the
temperature strongly suppresses finite-size effects, and consequently
the exact thermodynamic limit can be reached for all T & 0.5t already
for the currently accessible system sizes [139].

Figure 5.4: Schematic of method appli-
cability.

This numerical technique, in conjunction with twisted boundary
conditions, would be another tool with which to study how long-range
interactions act as a universal mechanism for bad-metallic transport.
In particular, this method would be ideal for rigorous studies dis-
entangling the interplay between local, Hubbard-type potentials and
non-local, Coulomb-type potentials as a function of filling. Indeed, it
would be particularly use to determine for which sets of parameters
the effects of long-range interactions can safely be neglected and in
which regions they cannot be neglected in spinful systems. Further-
more, clean, tunable experimental systems, such as the transition metal
dichalcogenide heterostructures and cold atomic platforms discussed
in Chapter 1, could provide valuable sources of experimental evidence
for these ideas.

In addition to understanding transport properties at lower temper-
atures, another interesting research direction would be investigating
the competition between external disorder and self-generated disor-
der arising from poor screening. For instance, it could be interest-
ing to understand many-body localization in the context of two very
different sources of disorder. A comprehensive understanding and
a large body of literature already accompanies this phenomenon of
many-body localization in condensed-matter systems [225]. However,
an understanding of many-body localization in the context of long-
range interactions is still a topic of much recent debate and is being
investigated via the use of cold atomic systems [226, 227].

Figure 5.5: Infographric summarizing
the numerous intertwining effects in
strongly correlated materials.

Furthermore, a concrete problem that could be addressed in the
next few years would be to develop a theoretical framework to de-
scribe how systems can be tuned between saturated Efros-Shklovskii
gaps and exponentially soft gaps in their distributions of on-site poten-
tial. Most of the arguments and studies investigating Efros-Shklovskii
disorder phenomena have focused on general arguments or mean-
field type approaches. However, the few studies that have gone be-
yond mean field, including our work in Chapter 3 and Ref. [179], have
hinted at the importance of the build-up of short-range correlations
which rely on long-range interactions.
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Overall, this thesis clearly demonstrates the power of long-range in-
teractions in giving rise to novel forms of strongly correlated behavior.
We have shown that long-range interactions lead to multiple signatures
of bad-metallic transport when treated in a framework beyond semi-
classical theory. Moreover, we have argued that they could constitute
a universal mechanism for the anomalous transport seen in a broad
variety of materials. In summary, the work presented here invites us
to examine strong electronic correlations from a new perspective, one
which has many possible future directions as the interplay between the
self-generated disorder of long-range interactions and other factors,
such as external disorder and thermal fluctuations, is disentangled.
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Appendix A
Exact Diagonalization

A

This appendix contains technical details related to exact diagonaliza-
tion that were not covered in Chapter 2. In particular, we discuss the
fermionic sign convention implemented to account for the antisym-
metric nature of the wave function in our calculations. We additionally
cover the Gram-Schmidt orthogonalization procedure that we utilize
during our Lanczos diagonalization runs in order to reduce numerical
instabilities. Finally we conclude with a discussion of the mixing ma-
trix used with a symmetrized basis of states and a computation of the
phase factor for the kinetic hopping processes that arises from the use
of twisted boundary conditions.

A.1 Fermionic sign convention

Typically, when we study fermionic models, there will be a hopping
term which accounts for the kinetic energy generated by electrons
moving along the lattice. Due to fermionic statistics (antisymmetric
nature of the wave function), we must keep track of minus signs when
encoding this term. Thankfully, the bookkeeping of this sign can be
easily accounted for with a well-chosen convention for the represen-
tation of the basis states. In one dimension with open boundary con-
ditions, we do not need to worry about the fermionic signs because
the electrons cannot pass around each. However, this is not the case
in higher dimensions and in one dimension with periodic boundary
conditions. For simplicity, let us now consider a system of spinless
fermions that move via nearest-neighbor hoppings. In other words, an
electron on site i can hop to any of its nearest-neighbor sites, provided
that it is unoccupied. Let us consider a square lattice with N = 16
sites, shown in Fig. A.1.

We choose to define our states as a bit string, where the i-th bit
(going from left to right) corresponds to the occupation state (0 or 1)
on the i-th site in the lattice. Let us consider the state

|φ〉 = 1110010010101010
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where sites 0, 1, 2, 5, 8, 10, 12, and 14 are occupied (see Fig. A.1). Let
us now consider that the matrix element that describes the hopping
process that involves moving the electron on site 0 to its neighboring
site 4 (green arrow in the figure). This process will yield a new state,
|φ′〉, which will be multiplied by a factor (−1)∆n, where ∆n is equal
to the number of electrons in between sites 0 and 4 (not included). By
choice of our numbering convention, we can easily count that there
are 2 electrons on sites 1− 3 and include this in the appropriate matrix
element.

Figure A.1: Illustration of hopping pro-
cess from site 0 to site 4.

The computation of the fermionic signs can be generalized rather
straightforwardly to the spinful case as the hopping terms conserve
the spin. In other words, if we choose to label our spinful states as a
pair of bit strings and we compute the hopping element of a particular
spin from a site i to j, then we can easily count the number of spins
in a given sector between sites (indices) i and j on the appropriate bit
string.

A.2 Gram-Schmidt Orthogonalization

The Gram-Schmidt process ensures the orthogonalization of a set of
vectors which is a necessary property for our Krylov basis as discussed
in Chapter 2. The use of this technique helps to suppress numerical
instabilities that can arise during the creation and normalization of
new Krylov vectors. The method utilizes a series of projections on the
basis of Krylov vectors, K. We briefly describe the algorithm here in
this section and refer to Ref. [228] for more information on the process
and its applications in linear algebra.

We assume that at iteration n in our Lanczos diagonalization routine
we have our set of Krylov vectors, {|xi〉 , i = 1, . . . , n}. From this set,
we can construct an orthogonal Krylov basis of vectors, K = {|vi〉 , i =
1, . . . , n} via the following steps:

1. |vi〉 = |xi〉

2. |vn〉 = |xn〉 −
n−1

∑
i=1

〈xn|vi〉
‖vi‖2 |vi〉.

This orthogonalization process is straightforward and inexpensive in
terms of computational resources. In our diagonalization codes, we
perform this procedure at every iteration in our Lanczos runs in order
to prevent any numerical instabilities from growing out of control.

A.3 Orthonormalization of symmetry basis

As discussed in Chapter 2, we can utilize the discrete translation and
point group symmetries of our lattice to transform our Hamiltonian
matrix into block diagonal form. Each block diagonal matrix corre-
sponds to a certain symmetry sector, `, and has dimensions much
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smaller than that of the original matrix (N` < NH). A general state
within a symmetry sector can be expressed as a linear combination of
the parents,

|l〉 =
N`

∑
i=1

αi |ri〉 . (A.1)

Here we restrict the summation to only the relevant parents, N`, as
discussed in Chapter 2. These general states must be properly sym-
metrized as

∣∣l̃
〉
=

1√
Ns

Ns

∑
s=1

ŝ

(
N`

∑
j=1

µ`l j
∣∣rj
〉
)

, (A.2)

in order to be used as the basis of states for the block diagonal matrix
of the symmetry sector. The first summation is carried out over all of
the discrete symmetries, ŝ, and the second summation is carried out
over all of the relevant parents. Here, the linear weights, αi, have now
been replaced by µ`l j which we refer to as the mixing matrix. This is
responsible for enforcing the orthonormality condition among these
symmetrized states, {

∣∣l̃
〉
}. For the remainder of this section, we shall

assume that we are working with an orthonormal basis of parents,〈
ri
∣∣rj
〉
= δij, and we shall determine the exact form of µ`l j.

We shall denote symmetrized states with
a tilde,

∣∣l̃
〉
, and unsymmetrized states

without a tilde, |l〉.

Unfortunately, the orthogonality of the parents is not sufficient to
ensure the orthonormality of the properly symmetrized states, {

∣∣l̃
〉
}.

We note that the mixing matrix depends on the symmetry sector, `.
We begin by stating our requirement that two symmetrized states are
orthonormal to each other,

δlm =
〈
l̃
∣∣m̃
〉
=

Ns

∑
s=1

N`

∑
i,j=1

µ`∗jl µ`mi
〈
rj
∣∣ŝ
∣∣ri
〉

(A.3)

where we assume that the normalization factors of 1√
Ns

are contained
in the mixing matrix. We have combined the double summation over
symmetry operations into one summation due to the group theoretic
properties of the symmetry group. We proceed to write the orthonor-
mality requirement as

〈
l̃
∣∣m̃
〉
=

Ns

∑
s=1

N`

∑
i,j=1

µ`∗jl µ`mi
〈
rj
∣∣χs
∣∣ŝ(ri)

〉
(A.4)

which can be further expressed as

〈
l̃
∣∣m̃
〉
=

N`

∑
i,j=1

µ`∗jl µ`mi

[
∑
s∈εi

〈
rj
∣∣χs
∣∣ri
〉
+ ∑

s 6∈εi

〈
rj
∣∣χs
∣∣ŝ(ri)

〉
]

(A.5)

where εi is the group of symmetry operations that leaves |ri〉 un-
changed, εi = {s | ŝ(ri) = ri}. By use of the orthogonality of the
parents, we immediately see that the second term will not contribute
because ŝ will transform |ri〉 into a child configuration which cannot
be
∣∣rj
〉

by construction of the parent-children sets. Therefore, we are
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left with
〈
l̃
∣∣m̃
〉
=

N`

∑
i,j=1

µ`∗jl µ`mi

〈
rj

∣∣∣∣∣∑s∈εi

χs

∣∣∣∣∣ri

〉
(A.6)

which simplifies to

〈
l̃
∣∣m̃
〉
=

N`

∑
i,j=1

µ`∗jl µ`mi deg(ri) δij (A.7)

when we use the definition for the degeneracy of a parent configura-
tion,

deg(ri) = ∑
s∈εi

χs. (A.8)

From Eq. (A.7), we can easily deduce that the mixing matrix elements
are of the form

µ`ij =
δij√

deg(ri)
, (A.9)

where the degeneracy is independent of the symmetry sector ` and co-
incides with the number of symmetries that leave the parent invariant,
|εi|. This simple expression for the mixing matrix elements is readily
implemented in calculations of observables, as discussed in Chapter 2.
For the case of a non-orthogonal basis of parents, we invite the reader
to refer to Ref. [140].

A.4 Twisted boundary condition phase factor

As discussed in Chapter 2, twisted boundary conditions (TBCs) amount
to a modification of the hopping terms in the Hamiltonian of interest
by a Peierls phase,

ĉ†
i ĉj → eiθ . (A.10)

In this section, we provide an example calculation of the phase factor
for a finite-size cluster on the isotropic triangular lattice. The com-
putation of the phase for any other lattice geometry should follow
straightforwardly from this example. We consider a finite-size cluster
with translation vectors defined as

~T1 = `û1 + `û2 (A.11)
~T2 = −`û1 + 2`û2, (A.12)

as illustrated in Fig. A.2 for ` = 2, û1 = (1, 0), and û2 = (1/2,
√

3/2)
(isotropic triangular lattice unit vectors).

Figure A.2: Illustration of finite clus-
ter (blue) on triangular lattice. The
cluster translation vectors are shown in
black, and triangular lattice unit vectors
in green. We write the Peierls phase as

θ =
q
h̄c

∫ f

i
~A · d~l = 2π

φ0

∫ f

i
~A · d~l (A.13)
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where φ0 = hc/q. We define the unit translation vectors of the finite-
size cluster as

α̂1 =
~T1

|~T1|
=
`û1 + `û2

`
√

3
=

1√
3

(
û1 + û2

)

α̂2 =
~T2

|~T2|
=
−`û1 + 2`û2√

3
=

1√
3

(
− û1 + 2û2

)
.

We. wish to identify the components of the vector potential, ~A,

These prefactors arise from the expres-
sion of the Lorenz force in c.g.s. units

F = q
(

E +
v
c
× B

)
(A.14)

where q is the charge of the particle, c is
the speed of light, v is the speed of the
particle, and E and B are the electric and
magnetic fields, respectively.

~A = A1α̂1 + A2α̂2, (A.15)

required as the cluster is wrapped according to the translation vectors
~T1 and ~T2 to achieve a total twist,

θT1 = 2πξ1 =
2π

φ0

∮ (
A1α̂1 + A2α̂2

)
· d~l (A.16)

=
2π

φ0

(
A1α̂1 + A2α̂2

)
· ~T1

=
2π

φ0

(
A1α̂1 + A2α̂2

)
· `
√

3α̂1

=
π`
√

3
φ0

(
2A1 + A2

)

θT2 = 2πξ2 =
2π

φ0

∮ (
A1α̂1 + A2α̂2

)
· d~l (A.17)

=
2π

φ0

(
A1α̂1 + A2α̂2

)
· ~T2

=
2π

φ0

(
A1α̂1 + A2α̂2

)
· `
√

3α̂2

=
π`
√

3
φ0

(
A1 + 2A2

)
= 2πξ2.

In other words, θTi corresponds to the total phase acquired along the
path from a site to its replica located ~Ti away. From the last line for
each phase above we can determine expressions for A1 and A2 as

A1 =
2
3
(
2ξ1 − ξ2

) φ0

`
√

3
(A.18)

A2 =
2
3
(
− ξ1 + 2ξ2

) φ0

`
√

3
. (A.19)

These can be used to define the phase acquired when an electron hops
from a site i to its nearest neighbor on site j along any of the 6 bonds
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of the triangular lattice,

θ1 =
2π

φ0
~A · û1 =

2π

3`
(2ξ1 − ξ2) (A.20)

θ2 =
2π

φ0
~A · û2 =

2π

3`
(ξ1 + ξ2) (A.21)

θ3 =
2π

φ0
~A · −û1 =

2π

3`
(−2ξ1 + ξ2) (A.22)

θ4 =
2π

φ0
~A · −û2 =

2π

3`
(−ξ1 − ξ2) (A.23)

θ5 =
2π

φ0
~A · û2 =

2π

3`
(−ξ1 + 2ξ2) (A.24)

θ6 =
2π

φ0
~A · û2 =

2π

3`
(ξ1 − 2ξ2). (A.25)

The definitions of the bond directions are shown in Fig. A.3. These
phases are incorporated accordingly into any matrix elements involv-
ing kinetic (hopping) processes, including the computation of the ki-
netic energy and the Drude weight, as discussed in Chapter 2 and
Chapter 3.

Figure A.3: Definitions of the bond di-
rections on the triangular lattice.



Appendix B
Ewald Summation

B

B.1 Derivation of the Ewald Summation

Figure B.1: We are interested in cal-
culating the inverse distance between
two sites, rij (blue), and the contribution
from the mirror images to the potential,
rij + R (red). The thick gray lines indi-
cate the edges of the finite-size cluster.

This thesis examines the effects of long-range (Coulomb type) interac-
tions in quantum lattice models. This form of interaction is computed
by considering a finite-size cluster with several surrounding replicas
to mimic the thermodynamic limit. In order to compute the total po-
tential energy of a given configuration of charges, we must compute
the contribution from a pair of sites (i and j) in the finite cluster, as
well as the contributions from the mirror images of site j. Numeri-
cally speaking, this boils down to solving the following type of infinite
summations over finite clusters in the thermodynamic limit,

Uα =
1
2 ∑

R

′∑
ij

V(n̂i − n̄)(n̂j − n̄)∣∣rij + R
∣∣α (B.1)

where ∑ij is a summation over pairs of sites (i and j, i 6= j) in the
finite cluster with a factor of 1/2 in the front to avoid double count-
ing. In the numerator, n̂i is the occupation number operator in second
quantization for site i, n̄ is the neutralizing charge background and
V is the interaction strength. Throughout the remainder of the dis-
cussion, we shall write the numerator as Vij for the sake of simplicity,
Vij = V(n̂i − n̄)(n̂j − n̄). The distance between the two sites is pro-
vided as rij and the translation vector of the finite-size cluster is R (see
Fig. B.1). The range of the interaction is given as α, with α = 1 cor-
responding to the pure Coulomb interaction. The prime on the first
summation (over translation vectors) indicates that the sum does not
include terms where R + rij = 0. The vector R is defined as a multiple
of the translation vectors of the cluster,

R = n1T̂1 + n2T̂2 + n3T̂3 ni ∈ Z. (B.2)
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We define the volume of the finite cluster, vol, as

vol = T̂1 · (T̂2× T̂3). (B.3)

The reciprocal unit cell vectors are defined as

K̂i = 2π · T̂j× T̂k

vol
(B.4)

and the reciprocal unit cell volume as

Ω = K̂1 · (K̂2× K̂3) =
(2π)d

vol
. (B.5)

These quantities are defined for the general, three-dimensional case but can easily be generalized to
cases of lower dimension. For example, the two-dimensional case can be reached by setting T̂3 =

(0, 0, 1).
Solving the kind of lattice summations present in Eq. (B.1) via a direct method typically does not

converge well and requires large amounts of computational time and resources. However, in Ref. [229],
Ewald established a technique to circumvent this problem that rests on the following definition of the
gamma function:

Γ(α) = λα

∞∫

0

dx xα−1e−λx. (B.6)

We make the substitution λ = |r|2,

1

|r|2α
=

1
Γ(α)

∞∫

0

dx xα−1e−|r|
2x. (B.7)

If we redefine 2α→ α, then we arrive at the following expression:

1
|r|α =

1
Γ(α/2)

∞∫

0

dx x
α
2−1e−|r|

2x. (B.8)

This expression can be split into two parts as

1
|r|α =

1
Γ(α/2)

ε2∫

0

dx x
α
2−1e−|r|

2x +
1

Γ(α/2)

∞∫

ε2

dx x
α
2−1e−|r|

2x (B.9)

= IA + IB (B.10)

where the cutoff parameter ε is typically chosen to be ∼ 2π
L where L is a typical length of the finite

size cluster in real space. This split allows us to partition our energy expression (Eq. (B.1)) into two
parts

Uα =
1
2 ∑

R

′∑
ij

IA +
1
2 ∑

R

′∑
ij

IB (B.11)

= φA + φB (B.12)
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where we now write Vij = 1 for the sake of simplicity. As a reminder, Vij contains the interaction
strength V and the factors of ni − n̄. The idea of the Ewald summation technique is that these two
terms will be solved separately, one in real space and one in reciprocal space, because the overall
summation will converge exponentially fast this way.

We begin by examining φB first. Written out completely we have

φB =
1

2Γ(α/2) ∑
R

′∑
ij

∞∫

ε2

dx x
α
2−1e−|rij+R|2x. (B.13)

We substitute u =
∣∣rij + R

∣∣2 x which implies that du =
∣∣rij + R

∣∣2 dx. We update the limits of integration
accordingly to

ε2 →
∣∣rij + R

∣∣2 ε2

∞→ ∞.

Incorporating all of these elements of the substitution, we obtain

φB =
1

2Γ(α/2) ∑
R

′∑
ij

∞∫

ε2|rij+R|2
du
∣∣rij + R

∣∣−2
(

u
∣∣rij + R

∣∣−2
) α

2−1

e−u (B.14)

=
1

2Γ(α/2) ∑
R

′∑
ij

∞∫

ε2|rij+R|2
du
∣∣rij + R

∣∣−2 ·
∣∣rij + R

∣∣2−α · u α
2−1 · e−u (B.15)

=
1

2Γ(α/2) ∑
R

′∑
ij

∣∣rij + R
∣∣−α

∞∫

ε2|rij+R|2
du u

α
2−1e−u (B.16)

We can further simplify this expression by use of the incomplete gamma function,

Γ(a, x) =
∞∫

x

dt ta−1e−t, (B.17)

where we identify t = u, a = α/2, and x = ε2
∣∣rij + R

∣∣2. This simplifies our expression for φB to

φB =
1

2Γ(α/2) ∑
R

′∑
ij

∣∣rij + R
∣∣−α Γ

(
α/2, ε2 ∣∣rij + R

∣∣2
)

. (B.18)

This is our final expression for φB and we see that it amounts to a sum in real space of the inverse
distance multiplied by the incomplete gamma function.

We now proceed to examine φA which is given as

φA =
1

2Γ(α/2) ∑
R

′∑
ij

ε2∫

0

dx x
α
2−1e−|rij+R|2x. (B.19)
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This time we will substitute x = u2 which yields dx = 2u du and sends the limits of integration to

0→ 0 (B.20)

ε2 → ε. (B.21)

With this substitution, we now have

φA =
1

2Γ(α/2) ∑
R

′∑
ij

ε∫

0

du 2u ·
(
u2) α

2−1e−|rij+R|2u2
(B.22)

which we can express in simpler terms as

φA =
1

Γ(α/2) ∑
R

′∑
ij

ε∫

0

du uα−1e−|rij+R|2u2
(B.23)

We recognize the last part of this integral as a Gaussian which can be expanded using the d-dimensional
Fourier integral expression:

e−a2|t|2 =
1

(2π)d/2

(
1√
2a

)d ∞∫

−∞

ddv e−|v|
2/4a2

e−iv·t (B.24)

where we identify a = u and t =
∣∣rij + R

∣∣. Implementing this in our expression for φA (Eq. (B.23)), we
have

φA =
1

Γ(α/2) ∑
R

′∑
ij

ε∫

0

du uα−1 · 1
(2π)d/2

(
1√
2u

)d ∞∫

−∞

ddv e−|v|
2/4u2

e−iv|rij+R| (B.25)

=
π−d/2

2dΓ(α/2) ∑
R

′∑
ij

ε∫

0

du uα−1−d
∞∫

−∞

ddv e−|v|
2/4u2

e−iv·|rij+R|. (B.26)

We reverse the order of integration,

φA =
π−d/2

2dΓ(α/2) ∑
R

′∑
ij

∞∫

−∞

ddv e−iv·|rij+R|
ε∫

0

du uα−1−de−|v|
2/4u2

, (B.27)

and perform the substitution s = |v|2 /4u2, which implies that

u2 =
|v|2
4s
→ u =

|v|
2

s−1/2

Subsequently, we also have

uα−1−d =

( |v|
2s1/2

)α−1−d

and the integration variables are updated as

du = −1
2
|v|
2

s−3/2ds

0→ ∞

ε→ |v|
2

4ε2
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We incorporate all of these substitutions into Eq. (B.27) and arrive at the following expression:

φA =
π−d/2

2dΓ(α/2) ∑
R

′∑
ij

∞∫

−∞

ddv e−iv·|rij+R|
|v|2/4ε2∫

∞

ds
(
− |v|

4
s−3/2

)( |v|
2

s−1/2
)α−1−d

e−s, (B.28)

=
π−d/2

2dΓ(α/2) ∑
R

′∑
ij

∞∫

−∞

ddv e−iv·|rij+R|
∞∫

|v|2/4ε2

ds
( |v|

4
s−3/2

)( |v|
2

s−1/2
)α−1−d

e−s, (B.29)

=
π−d/2

2dΓ(α/2) ∑
R

′∑
ij

∞∫

−∞

ddv e−iv·|rij+R|
∞∫

|v|2/4ε2

ds
|v|α−d

2α−d+1 s
d−α

2 −1e−s, (B.30)

=
π−d/2

2d+1Γ(α/2) ∑
R

′∑
ij

∞∫

−∞

ddv e−iv·|rij+R|
( |v|

2

)α−d ∞∫

|v|2/4ε2

ds s
d−α

2 −1e−s (B.31)

Next, we want to write
∞∫

|v|2/4ε2

ds s
d−α

2 −1e−s

in terms of an incomplete gamma function

Γ(a, x) =
∞∫

x

dt ta−1e−t.

We can immediately identify that t = s, x = |v|2 /4ε2, and a = d−α
2 , which allows us to write the

following incomplete gamma function:

Γ

(
d− α

2
,
|v|2
4ε2

)
=

∞∫

|v|2/4ε2

ds s
d−α

2 −1e−s. (B.32)

This finally allows us to write φA as

φA =
π−d/2

2d+1Γ(α/2) ∑
R

′∑
ij

∞∫

−∞

ddv e−iv·|rij+R|
( |v|

2

)α−d

Γ

(
d− α

2
,
|v|2
4ε2

)
. (B.33)

Now we transform the integral over all reciprocal space,
∫ ∞
−∞ ddv, to a sum over all reciprocal lattice

vectors, k, of the integral over the reciprocal unit cell (U∗),

φA =
π−d/2

2d+1Γ(α/2) ∑
R

′∑
ij

∑
k

∫

U∗

ddv e−i(v+k)·(rij+R)
( |v + k|

2

)α−d

Γ

(
d− α

2
,
|v + k|2

4ε2

)
. (B.34)

The k · R term will be neglected because it will just give ei·2πm, m ∈ Z. Therefore, our expression
simplifies to

φA =
π−d/2

2d+1Γ(α/2) ∑
R

′∑
ij

∑
k

∫

U∗

ddv e−i(v+k)·rij e−iv·R
( |v + k|

2

)α−d

Γ

(
d− α

2
,
|v + k|2

4ε2

)
. (B.35)
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We further simplify this by ∑R
′ → ∑R so that we now include the rij + R = 0 terms. This will be

corrected for later in the derivation. At this point we now have

φA =
π−d/2

2d+1Γ(α/2) ∑
R

∑
ij

∑
k

∫

U∗

ddv e−i(v+k)·rij e−iv·R
( |v + k|

2

)α−d

Γ

(
d− α

2
,
|v + k|2

4ε2

)
. (B.36)

We will perform the summation over real space vectors, R, first so that the integrand makes a series
expansion of the reciprocal space function of the general form:

(2π)d

vol
f (k) = ∑

R
eik·R

∫

U∗

ddv f (v + k)e−iv·R. (B.37)

This leads us to

φA =
π−d/2

2d+12α−dΓ(α/2) ∑
ij

∑
k

∑
R

∫

U∗

ddv |v + k|α−d e−i(v+k)·rij Γ

(
d− α

2
,
|v + k|2

4ε2

)

︸ ︷︷ ︸
f (v+k)

e−iv·R (B.38)

This now gives us

φA =
π−d/2

2α+1Γ(α/2) ∑
k

∑
ij

(2π)d

vol
f (k) (B.39)

=
πd/2vol−1

2α−d+1Γ(α/2) ∑
k

∑
ij
|k|α−d e−ik·rij Γ

(
d− α

2
,
|k|2
4ε2

)
(B.40)

=
πd/2vol−1

2α−d+1Γ(α/2) ∑
k

∑
ij
|k|α−d Γ

(
d− α

2
,
|k|2
4ε2

)(
cos (k · rij)− i sin (k · rij)

)
(B.41)

=
πd/2vol−1

2α−d+1Γ(α/2) ∑
k 6=0

∑
ij
|k|α−d Γ

(
d− α

2
,
|k|2
4ε2

)
cos (k · rij) (B.42)

where the sin (k · rij) term in the second-to-last line drops out because it is an odd function evaluated
over the whole interval of reciprocal lattice vectors. In the last line, we only keep the k 6= 0 terms and
will need to account for the prior inclusion of the k = 0 term next. This term is evaluated as

φA(k = 0) =
πd/2vol−1

2α−d+1Γ(α/2)
lim
k→0
|k|α−d Γ

(
d− α

2
,
|k|2
4ε2

)
∑
ij

cos (k · rij) (B.43)

We focus on the term

lim
k→0

Γ
(

d−α
2 , |k|

2

4ε2

)

|k|α−d =
∞
0

(B.44)

and neglect the cos (k · rij) because it will evaluate to 1 for k = 0. The values of the numerator and
denominator obviously depend on d and α and can in general give rise to values that render this limit

impossible to take. For example, Γ
(

d−α
2 , |k|

2

4ε2

)
= ∞ for d = 2 and α = 2. Therefore, we will employ
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L’Hôpital’s rule to compute the derivative in the general case, which means that we need to compute
the derivatives of the numerator and denominator in Eq. (B.44).

∂

∂k

(
kd−α

)
= (d− α)kd−α−1 (B.45)

∂

∂k
Γ

(
d− α

2
,
|k|2
4ε2

)
= −

(
|k|2
4ε2

) d−α
2 −1

e−|k|
2/4ε2 2 |k|

4ε2 (B.46)

= −
( |k|

2

)d−α−1

εα−de−|k|
2/4ε2

(B.47)

Now with these derivatives, we can apply L’Hôpital’s rule and arrive at

lim
k→0

= −

( |k|
2

)d−α−1
· εα−d · e−|k|2/4ε2

(d− α) |k|d−α−1 =
εα−d

2d−α−1(α− d)
(B.48)

which means that φA(k = 0) is given as

φA(k = 0) =
πd/2vol−1

2α−d+1Γ(α/2)
εα−d

2d−α−1(α− d) ∑
ij

Vij (B.49)

=
πd/2vol−1

Γ(α/2)
εα−d

(α− d) ∑
ij

Vij (B.50)

where we have included again the pairwise interaction term Vij = V(n̂i − n̄)(n̂j − n̄) as a reminder to
the reader that this term is still contained in our expression. However, this k = 0 term can be neglected
when working with a charge-neutral system [230].

Previously we changed the summation over real space lattice vectors to include terms where rij +

R = 0. We now correct for this by subtracting this term from the total energy,

Uα =
1
2 ∑

R

′∑
ij

Vij∣∣rij + R
∣∣α =

1
2 ∑

R

′∑
ij

IA +
1
2 ∑

R

′∑
ij

IB. (B.51)

The pairwise sum can be split into two components, ∑ij = ∑i 6=j +∑i=j. We are only interested in the
i = j term because this represents the self-energy that we artificially added in IA by extending ∑R

′ to
∑R,

1
2 ∑

i

Vii

|rii|α
= ∑

i
IA + ∑

i

Vii

|rii|α
Γ
(

α/2, ε2 |rii|2
)

. (B.52)

We define the self-energy correction term as

φ0 = lim
r→0

1
2 ∑

i
IA (B.53)

= lim
r→0

∑
i

Vii

(
1− Γ

(
α/2, ε2 |rii|2

))

|rii|α
(B.54)

=
0
0

. (B.55)
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Again we must apply L’Hôpital’s rule

φ0 = lim
r→0

1
2 ∑

i

∂
∂r Vii ·

(
1− Γ(α/2, ε2 |r|2)

)

∂
∂r

(
|r|α

) (B.56)

= lim
r→0

1
2 ∑

i

Vii ·
(
ε2 |r|2

) α
2−1e−ε2|r|22ε2 |r|

α |r|α−1 (B.57)

= lim
r→0

1
2 ∑

i

Viiε
α−2 |r|α−2 · 2ε2 |r| e−ε2|r|2

α |r|α−1 (B.58)

= ∑
i

Viiε
α

α
. (B.59)

This self-energy correction is the last component that we need in order to write a complete expression
for the energy. To do so, we combine Eqs. (B.18), (B.42), (B.50), and (B.59) to obtain our final expression
for Uα:

Uα = φB + φA(k 6= 0) + φA(k = 0)− φ0 (B.60)

Uα =
1

2Γ(α/2) ∑
R

′∑
ij

Vij∣∣rij + R
∣∣α Γ
(

α/2, ε2 ∣∣rij + R
∣∣2
)

+
πd/2vol−1

2α−d+1Γ(α/2) ∑
k 6=0

∑
ij
|k|α−d Γ

(
d− α

2
,
|k|2
4ε2

)
cos (k · rij)

+
πd/2vol−1

Γ(α/2)
εα−d

(α− d) ∑
ij

Vij −∑
i

Viiε
α

α
.

This term typically converges with a ∼ 5 replicas of a finite-size cluster. For more information on the
Ewald summation technique, we invite the interested reader to refer to Refs. [151, 152, 230–232].



Appendix C
Classical Monte Carlo

C

C.1 Classical Monte Carlo

In nuclear physics, for example, Monte
Carlo has been applied to compute in-
tegrals of actions in lattice gauge theo-
ries [233]. In astrophysics, Monte Carlo
methods have been employed to exam-
ine the size and geometrical structure of
galaxies [234].

In Chapter 4, we studied the high temperature behavior of two-dimen-
sional systems with long-range interactions. In order to carry out nu-
merical investigations of such systems, we employ the classical Monte
Carlo method, a well-known technique in statistical physics. The main
goal of this technique is to compute high-dimensional integrals and as
such it has enjoyed a wide variety of applications, ranging from nu-
clear physics to astrophysics. In this appendix, we discuss the general
motivation and implementation of Monte Carlo schemes.

In statistical physics, the high-dimensional integral in question is
most often related to the partition function,

Z =
∫

PS

[
drd
]
e−βH(r), (C.1)

which is an integral over phase space (PS) of the Boltzmann weight,
e−βH(r), with the inverse temperature defined as β = 1/kBT. The dif-

ferential,
[
drd
]
, and the Hamiltonian, H(r), are defined in terms of the

spatial coordinates of a general N-particle system in d dimensions. The
simple notation above is chosen to avoid cluttering our discussion with
cumbersome and unnecessary details. For a many-particle system, the
dimension of the phase space corresponding to the Hamiltonian, H,
and the partition function, Z , scales with the number of particles, ∼ N,
and any attempt at efficient integration can appear helpless. However,
we will see that all is not lost with the use of Monte Carlo calculations.

Let us momentarily forget the complicated details of statistical physics
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and instead focus on the efficient integration of a general, one-dimen-
sional function,

I =
∫ b

a
dx f (x). (C.2)

Figure C.1: The function f (x) divided in
M evenly spaced bins.

We can divide the region x ∈ [a, b] into M evenly spaced bins and
approximate I by performing a discrete summation over the values of
f (x)../Figures/Appendix4 at the midpoint of each bin,

The bin width, δx = xi+1 − xi , will be
equivalent for all bins assuming they are
evenly spaced in the interval [a, b].

I ≈
M−1

∑
i=0

δx× f
(

xi+1 − xi
2

)
. (C.3)

This is the midpoint rule approximation and as the number of bins in-
creases, this estimate will converge to the true value of I as M−1. Other

Simpson’s rule (or Simpson’s 1/3 rule)
approximates the interval in Eq. C.2 as

I ≈ b−a
6

[
f (a) + 4 f

(
a+b

2

)
+ f (b)

]
. This

estimation can be improved by applying
Simpson’s rule to subintervals in [a, b].

sophisticated discretization schemes can improve the convergence; for
example, Simpson’s rule improves the convergence to M−4. These ap-
proaches work well and are straightforward to implement for simple,
low-dimensional integrals. However, they converge extremely slowly
for high-dimensional integrals as each variable, or dimension, requires
discretization [235].

For example, the convergence using
Simpson’s rule will scale as M−4/d

where d is the dimensionality of the in-
tegral under question.

Figure C.2: The unit circle divided in
M × M evenly spaced bins (left). Ran-
dom points sampled in the square bor-
dering the unit circle (right).

Figure C.3: Random walk that generates
new state completely uncorrelated from
the previous state.

In order to overcome this slow convergence, one might naively try a
simple sampling Monte Carlo approach. An example of this technique
would be to compute π from a simple sampling of the area of the
unit circle. We can imagine that the unit circle is bounded by a square
such that the coordinates of any point are bounded by x ∈ [−1, 1] and
y ∈ [−1, 1]. We can sample over M random points, pi = (xi, yi), to
determine an estimate for the area of the unit circle, A ≈ nhits/M,
where nhits is the number of random points that lie within the unit
circle. From this, the estimate of π directly follows as π ≈ A/r2 where
r is the radius of the unit circle.

The benefits of simple sampling are that the samples are indepen-
dent and that the method is straightforward to implement. For our
example estimating the value of π, we simply need to generate two
coordinates, x and y, which can be done using a pseudorandom num-
ber generator that operates based on a uniform distribution. Instead
of generating a random point, p = (x, y), let us consider sampling in
the phase space of many-body states to measure a given quantity, such
as the energy. At each step in the simple sampling scheme, we would
generate a brand new configuration by generating a random value for
each degree of freedom. If our states are represented by bitstrings as
in Chapter 2, then we would generate bit strings filled with randomly
placed zeros and ones (Fig. C.3).

However, fully generating a random configuration at each step can
be numerically costly. To reduce the computational overhead and im-
prove efficiency, we can instead work with a kind of random walk
known as a Markov chain where a state at a given time step depends
upon the state at the previous time step. In other words, for a system
with L sites, we do not need to generate L new random values at each
step. Instead, we can choose to modify the value at one of the L sites at
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random, resulting in a new configuration (Fig. C.4). While this method
of sampling through phase space is less costly for large systems, each
new state retains a memory of the previous state which can lead to
correlation effects that one should treat carefully.

At this point, we have established that we can approximate high-
dimensional integrals by using Markov chains, which sample the phase
space of many-body states in a manner that strategically reduces the
computational effort. However, we still need to ensure that the "path"
through phase space along which we are sampling is actually rele-
vant to the computation at hand. For example, let us suppose that
we are interested in computing the average height of the Eiffel tower
(example adapted from Ref. [236]) and that this is done with a func-
tion fEiffel(x, y) that returns the height of the Eiffel tower at a point
(x, y). If the point falls outside the area of the structure, then the func-
tion returns zero. We can design a Markov chain process such that
we generate new geographical coordinates (points) by adding random
displacements within a window δx, δy ∈ [−w,+w] to the point from
the previous step. By doing this, we could perform a random walk all
over Paris (see Fig. C.5) and obtain an estimate for the average depth.
However, most of the points would not be relevant and would only
add zero to our running average.

Figure C.4: Random walk that slightly
modifies previous state to generate a
new one.

Figure C.5: Random walk around Paris
with the Eiffel tower circled in yel-
low [237].

Figure C.6: Map representing the distri-
bution of tourists (red) in Paris [238].

If we instead modify our Markov chain process to sample places
that are likely visited by tourists, then we will be able to more effi-
ciently obtain an accurate estimate for the average height of the tower
(see Fig. C.6). This practice of selecting relevant points is known as
importance sampling. The formal motivation for this technique is
directly related to the variance of the function f in the integrand,
I =

∫ b
a dx f (x). The error from estimating this integral is given as

δI =

√
Var( f )
M− 1

where Var( f ) = 〈 f 2〉 − 〈 f 〉2 (C.4)

for the one-dimensional case (generalization to higher dimensions is
straightforward) and scales with the variance of f (x). When we im-
plement importance sampling, we sample random numbers (or con-
figurations) according to a distribution, p(x), that should be close to
f (x) [235]. We can rewrite the integral as

I = 〈 f 〉 = 〈 f /p〉p =
∫ b

a

f (x)
p(x)

p(x)dx ≈ 1
M

M

∑
i

f (yi)

p(yi)
(C.5)

where the randomly generated yi are generated with distribution p(x).
Now the error depends on Var( f /p) and with p ∼ f this quantity
should be much smaller than Var( f ). A visual depiction of the benefits
of importance sampling is shown again in Fig. C.7.

If we leave our simple examples behind and return to statistical
many-body physics, we recall that we are interested in computing the
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average values of observables, O, of the form

〈O〉 = 1
Z
∫

PS

[
drd
]
O(r)e−βH(r). (C.6)

This integral expression can be approximated as

〈O〉 ≈ 1
Z

1
M

M

∑
i=1
O(ri)e−βH(ri) (C.7)

where ri represents a configuration of real-space coordinates corre-
sponding to the sampled many-body state in phase space (PS).

Figure C.7: Another illustration showing
how importance sampling (blue dots) is
much more efficient than sampling from
a uniform distribution (red dots).

However, if we apply importance sampling with a distribution P(r),
then our integral expression for the average should be rewritten as

〈O〉 =
∫

PS

[
drd
]
P(r)O(r)P(r)

e−βH(r)

Z . (C.8)

where the prime on the summation indicates that the states are sam-
pled according to P(r). The estimate of the integral expression is then
updated as

〈O〉 ≈ 1
M

M

∑
i=1

′ O(ri)

P(ri)

e−βH(ri)

Z . (C.9)

We choose to sample the states according to the equilibrium Boltz-
mann distribution, P(r) = e−βH(r)/Z [239], such that the final expres-
sion for the average value is simplified to

〈O〉 ≈ 1
M

M

∑
i=1

′ O(ri)

e−βH(ri)
Z e−βH(ri)

Z (C.10)

≈ 1
M

M

∑
i=1

′
O(ri). (C.11)

In order to implement this task numerically, we make use of the Metropolis-
Hastings algorithm which allows us to sample from the distribution of
our choice [240, 241]. In our case, we will choose to work with ei-
ther the Boltzmann distribution or the Gibbs distribution, as will be
discussed later on.

Each Monte Carlo calculation begins from a random initial configu-
ration, si, chosen such that it best represents the physical system under
consideration. Once this configuration has been initialized, we must
determine the transition probability for it to change into any other
state in phase space, T (si → s f ). We assume that the Monte Carlo
simulations are run for a sufficiently long period of time such that an
equilibrium distribution of states, Peq(s), is reached. Furthermore, we
impose a condition called detailed balance which states that the num-
ber of moves from si to a new state s f must be equal to the number of
moves from s f to si. This can be written more formally as

T (si → s f )P(si) = T (s f → si)P(s f ) (C.12)
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where T (si → s f ) represents the transition probability between the
two states and P(s) the probability of the occurrence of the state at a
given time step during the routine (illustrated in Fig. C.8).

Many different choices exist for the form of T (si → s f ) but we
choose to work with the Metropolis algorithm as it is the most straight-
forward [240]. The transition probability has two components,

T (si → s f ) = α(si → s f )acc(si → s f ) (C.13)

where α(si → s f ) describes the probability of performing a trial move
that generates s f from s f and acc(si → s f ) is the probability that s f

is accepted. At each step in our algorithm we must attempt a trial
move in which we alter the configuration by a pre-determined rule.
For a configuration defined by a list of particle positions, a trial move
might consist of adding a small displacement δr to a randomly chosen
particle. For a configuration defined by occupation numbers on lattice
sites, the trial move might instead consist of changing the occupation
(or spin flavor) at a randomly chosen site. These rules determine the
nature of the α matrix and are typically chosen to be symmetric as
in the original Metropolis scheme [240]. We work with a symmetric
α matrix and therefore the transition probability in our calculations
reduces trivially to

T (si → s f ) = acc(si → s f ). (C.14)

Inserting this into Eq. C.12 and rearranging yields

acc(si → s f )

acc(s f → si)
=
P(s f )

P(si)
. (C.15)

If we insert the equilibrium Boltzmann distribution on the right-hand
side, then we obtain

acc(si → s f )

acc(s f → si)
= e−β(H(s f )−H(si)). (C.16)

Again, there are many possible options for the definition of acc(si →
s f ), but the most common is that of Metropolis [240]:

acc(si → s f ) =





e−β(H(s f )−H(si)) if e−βH(s f ) < e−βH(si)

1 if e−βH(s f ) ≥ e−βH(si)
(C.17)

because it is both straightforward to implement and remarkably effi-
cient. In a nutshell, the Metropolis rule always accepts new configura-
tions that lower the energy (H(s f ) ≤ H(si)) and accepts configurations
that raise the energy by a probability equal to the ratio of their Boltz-
mann weights, e−βH(s f )/e−βH(si).

Figure C.8: Transition from si to s f .

Figure C.9: Example trial moves for dif-
ferent systems.

With the Metropolis rule, we are now able to sample the relevant
states in phase space according to the distribution of our choice. The
code listing in Fig. C.10 outlines a general structure for a Monte Carlo
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Figure C.10: Pseudocode for Monte
Carlo simulation. 1 import numpy as np

2

3 # initialization

4 Si = Initialization( N, vol )

5 Ei = Hamiltonian( Si )

6

7 for i in range( MCSteps ) :

8 # generate new state

9 Sf = TrialMove( si )

10 Ef = Hamiltonian( Sf )

11

12 # Metropolis: accept/reject

13 weight = np.exp( -Beta*(Ef-Ei) )

14 r = np.random.random()

15 if( r<weight or weight>=1. ):

16 Si = Sf

17 Ei = Ef

18 else :

19 pass

20

21 # compute any observables

22 Observables( Si )

algorithm. Up until this point, we have only mentioned the Boltz-
mann distribution which corresponds to Monte Carlo simulations in
the canonical ensemble in which the number of particles, volume, and
temperature are fixed. In our case, the calculation of certain observ-
ables requires access to a variable number of particles which entails
the use of the grand canonical ensemble. In this ensemble, the chemi-
cal potential, volume and temperature are held fixed. The distribution
used to generate states reflects this change, e−βH(s) → e−β[H(s)+µN(s)].

This concludes our introduction to classical Monte Carlo techniques.
The interested reader may find more information on the theory, tech-
nical details and applications in Refs. [235, 236, 239]. Unless explicitly
stated otherwise, our Monte Carlo calculations were thermalized for
10L2 time steps where L is the length of one side of the square lattice.
Furthermore, all quantities were averaged over 15, 000 measurements
with 100 time steps between each measurement.



Appendix D
Mott-Ioffe-Regel Limit

D

D.1 Mott-Ioffe-Regel limit

Here we provide details on the computation of the Mott-Ioffe-Regel
limit estimate for a representative member of the high-Tc family of
cuprate superconductors. Through our Monte Carlo calculations, we
compute the (in-plane) resistivity of a system of interacting electrons
on the square lattice and we wish to compare our results to a those
obtained from a representative strongly correlated material, which we
choose to be La2−xSrxCuO4. The crystal structure of the cuprate family
consists of quasi-two-dimensional layers of copper and oxygen atoms,
intercalated with layers of charge reservoirs. These materials are typ-
ically studied by effective Hamiltonians, in particular the Hubbard
model, on the square lattice [88, 89]. However, these models typi-
cally fall short in capturing the exotic phenomena present across the
phase diagram of the cuprates, including signatures of bad metallic
transport. Therefore, we seek to determine if the resistivity obtained
from our long-range interacting model corresponds to the bad metal-
lic regime for the cuprates. This regime is dictated by the Mott-Ioffe-
Regel limit where conventional Boltzmann theory falls as the electron
scattering length reaches the size of the lattice spacing, ` ≈ a.

Figure D.1: Illustration of the cubic
lattice structure in real space which
roughly corresponds to the structure of
the cuprates. The in-plane interatomic
spacings are labeled by a and b. The in-
terlayer spacing is labeled by c.

In order to compare the results of our two-dimensional model to
experimental values, we must convert our results to a resistivity that
corresponds to a layered system by including the length scale of the
interlayer spacing. As in Ref. [76], we assume that the out-of-plane
contribution to the resistivity will be negligible and set the Fermi sur-
face of this layered structure to be a cylinder with height 2π/c and
radius kF. To solve for the Fermi wave vector, kF, in terms of a general
filling, n, we integrate the occupation function, θ(k − kF), which fills
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the states with momenta k < kF. We obtain

n =
N
V

= 2
∫ π

c

− π
c

dkz

2π

∫ kF

0

kdk
2π

∫ 2π

0

dφ

2π
θ(k− kF) (D.1)

= 2

[
1

2π
k
∣∣∣∣

π
c

− π
c

][
1

2π

k2

2

∣∣∣∣
kF

0

][
1

2π
φ

∣∣∣∣
2π

0

]
(D.2)

=
k2

F
2πc

(D.3)

which can be rearranged to yield kF =
√

2πcn. This expression can be
inserted into the Drude expression for optical conductivity,

σ =
ne2τ

m∗
=

ne2τvF

h̄kF
(D.4)

where σ is the conductivity, e the charge of the electron, τ the mean
free time between scattering events, and m∗ the effective particle mass.
We invert this to obtain the final expression for the resistivity in a
layered system [74],

ρ =
2πch̄
kFe2`

. (D.5)

where c is the interlayer spacing (see Fig. D.1) and ` is the mean free
path traveled by a particle in between collisions.

Figure D.2: Illustration of the cylindrical
Fermi surface for the layered system.

To compute the Mott-Ioffe-Regel limit for the material of our choice,
we simply need to set the scattering length, `, equal to the lattice spac-
ing, a. We illustrate this computation for half-filling, n = 1/(a2c),
where we assume a = b for simplicity. This leads to kF =

√
2π/a.

Inserting this into Eq. (D.5) we arrive at the expression for the Mott-
Ioffe-Regel limit,

ρMIR =
√

2πc
h̄
e2 , (D.6)

which evaluates to ρMIR = 0.66 mΩ cm upon insertion of the interlayer
spacing of La2−xSrxCuO4 (c = 6.4Å) [76]. The Mott-Ioffe-Regel limit
values for the other densities studied in Chapter 4 (n = 0.5, 0.9) are
given as ρMIR = 0.93 mΩ cm and 0.69 mΩ cm, respectively.

In order to compare with our two-dimensional results, we need to
include a factor of the interlayer spacing,

ρ2D
sc = ρ0

[
U2

t2
h̄
e2

]
→ ρ

layered
sc = ρ2D

sc · c = 6.4ρ0

[
U2

t2 Å
h̄
e2

]
. (D.7)

We choose a reasonable factor of the band-structure parameters, U =

8t, to describe La2−xSrxCuO4 [242], arriving at a final expression for
our two-dimensional results for a representative layered system,

ρ
layered
sc = 16.8 ρ0

[
mΩ cm

]
. (D.8)

This factor and the Mott-Ioffe-Regel limits previously discussed were
incorporated into our results in Chapter 4 in order to demonstrate that
our long-range interacting model gives rise to bad-metallic behavior as
the resistivity climbs well beyond the Mott-Ioffe-Regel limit expected
for a typical strongly correlated system.
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