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In correlated electron systems the metallic character of a material can be strongly suppressed near an integer
concentration of conduction electrons as Coulomb interactions forbid the double occupancy of local atomic
orbitals. While the Mott-Hubbard physics arising from such on-site interactions has been largely studied, several
unexplained phenomena observed in correlated materials challenge this description and call for the development
of new ideas. Here we explore a general route for obtaining correlated behavior that is decidedly different
from the spin-related Mott-Hubbard mechanism and instead relies on the presence of unscreened, long-range
Coulomb interactions. We find a previously unreported pseudogap metal phase characterized by a divergent
quasiparticle mass and the opening of a Coulomb pseudogap in the electronic spectrum. The destruction of
the Fermi liquid state occurs because the electrons move in a nearly frozen, disordered charge background, as
collective charge rearrangements are drastically slowed down by the frustrating nature of long-range potentials
on discrete lattices. The present pseudogap metal realizes an early conjecture by Efros, that a soft Coulomb
gap should appear for quantum lattice electrons with strong unscreened interactions due to self-generated
randomness.

The Mott metal-insulator transition (MIT) is one of the
cornerstones of modern condensed matter physics [1, 2].
Originally devised to explain the cause of the insulating
state in narrow-band materials with partially-filled bands,
modern focus has shifted to understanding the anomalous
properties of metals that arise near the MIT and their
possible consequences in stabilizing other phases, including
superconductivity. Most theoretical developments in the field
have relied on the Hubbard model and its variants, where
the Coulomb repulsion between electrons is reduced to its
strongest (on-site) term — neglecting all non-local terms from
the outset. Based on these models and the techniques that
have been developed and applied to the problem, we now have
a broad understanding of the physics of strongly correlated
electron systems. Despite this widespread success several
experimental puzzles in quantum materials remain however
unexplained [3–7], which drives us to revisit the implicit
assumptions in the Mott-Hubbard description. To this aim
we solve a lattice model which explicitly includes long-range
electron-electron interactions, demonstrating that these can
give rise to strongly correlated behavior physically distinct
from the Mott type. Unrelated to the spin degrees of freedom,
we find strong mass renormalization caused by the buildup
of non-local charge correlations dressing the quasiparticles,
which is accompanied by the opening of a pseudogap in the
single-particle spectrum. This happens at the approach of
Wigner crystallization, where the fluctuating charge density
is collectively slowed down and behaves effectively as a
nearly frozen random medium, thereby enabling the Efros-
Shklovskii Coulomb gap phenomenon.

Model and methods. We study spinless electrons
interacting through a long-range repulsive potential
V(R) = V × (R/a)−α on a two-dimensional lattice, as
described by the following Hamiltonian [8]:

H = −t
∑
〈i j〉

c†i c j +
1
2

∑
i j

V(Ri j)(n̂i − n)(n̂ j − n). (1)

Here c†i and ci are creation and annihilation operators for
electrons on local atomic orbitals, n̂i is the local density
operator, t is the hopping matrix element between nearest
neighbor sites, which we take to be isotropic, and n = 1/2
is the average electron concentration. The strength of the
interactions is controlled by V , the value of the potential
at one lattice spacing a (which we set as the unit length).
For illustrative purposes we choose to present results for the
triangular lattice, but our findings are not specific to this
particular lattice geometry [9]. We explore the full phase
diagram of the model, taking the power-law exponent α as
a continuous parameter. The chosen form of V(R) includes
the pristine Coulomb potential V(R) ∼ 1/R (α = 1) and the
commonly studied nearest-neighbor repulsion characteristic
of the extended Hubbard model (α = ∞), as well as the dipolar
form V(R) ∼ 1/R3 of the two-dimensional electron gas near a
metallic gate (α = 3).

Eq. (1) is solved numerically via both Lanczos and brute
force exact diagonalization at zero temperature on finite-size
clusters with Ns = 12, 18, 24 sites [10]. Finite-size errors
on the kinetic part are minimized by averaging over twisted
boundary conditions (TBC) both at fixed particle number [11]
and in the grand-canonical ensemble [12, 13], which restores
the exact Ns → ∞ result in the non-interacting limit, V/t → 0
(see SI). For the interaction part, we extend the cluster size
to the thermodynamic limit by considering infinitely repeated
simulation cells. We perform the corresponding lattice sums
using the Ewald summation method [8], which ensures that
the electrostatic (Madelung) energy of periodic configurations
is exactly recovered in the classical limit, t/V → 0. Details on
the calculation of observables can be found in the SI file.

Phase diagram. Fig. 1 presents the phase diagram of
the model as a function of the power-law exponent α. Four
different regions are found: normal metal at weak interaction
strengths, and the pinball liquid, stripe-ordered Wigner crystal
and pseudogap metal at strong interactions. The origin of all
three strongly interacting phases can be understood starting
from the classical limit of the model. At t/V = 0, for nearest-
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FIG. 1: Phase diagram of the triangular lattice model with long-
range interactions. The line and the full symbols indicate the metal-
insulator transition to a stripe-ordered Wigner crystal, signaled by
the vanishing of the Drude weight D (Ns = 18 sites, using 121
twisted boundary conditions, TBC). The color map is the Drude
weight (697 grid points, Ns = 12 sites, 400 TBC). The gray dashed
line is the charge ordering transition as obtained from the random
phase approximation (RPA), which ignores correlations and does not
capture the extreme fragility of the Wigner crystal. The black dashed
and dotted lines are strong-coupling estimates for the Wigner crystal
melting (see text).

neighbor repulsive potentials (α → ∞, right side of Fig.
1) there exist infinitely many classical configurations, where
part of the particles (“pins”) are located on a superlattice
with threefold periodicity, the other particles (“balls”) being
randomly distributed on the remaining honeycomb lattice
[14], all having the same Madelung energy EMad/Ns = V/2.
This degeneracy is lifted by quantum fluctuations: as soon
as t/V > 0 (V/t < ∞), minimizing the kinetic term for
the “balls” provides a net energy gain ∝ t, identifying a
unique macroscopic ground state — the pinball liquid (PL)
[14]. This state has strong threefold correlations reminiscent
of the classical limit and a weakly metallic character, which
progressively evolves into a normal metal upon reduction of
the interaction strength V/t [15].

Long-range interactions also immediately lift the massive
degeneracy characterizing the classical limit [16]. As soon
as α < ∞ (bottom part of Fig. 1), the interactions beyond
nearest neighbors favor linear stripe configurations, which
become the most stable states at t = 0. The stripe phase,
which is the lattice analogue of a Wigner crystal [17], remains
insulating in the presence of quantum fluctuations at small
t > 0, as indicated by the vanishing of the Drude weight (Fig.
1 and 2(c)). The pinball liquid can still be stabilized above
some critical value of t/V as long as α & 2. The potential
energy difference with the classically more stable stripe
configurations behaves asymptotically as ∆E ∝ V/(R2)α, with
R2 =

√
3 the second neighbor distance. The transition from

stripes to PL occurs when the kinetic energy gain associated

with the itinerant carriers overcomes such energy difference,
leading to (V/t)c ∝ 3α/2 (dotted line in Fig. 1).

Suppression of order by the long-range interactions.
Reducing the long-range exponent below α ≤ 2 reveals a
dome-like shape, with the stripe-ordered insulator becoming
more and more unstable with increasing range of interactions.
The fragility of Wigner crystal order is a known feature of
long-range interactions in the continuum: in the jellium model
with pure Coulomb repulsion (α = 1), the ordered state melts
due to the existence of extremely soft, shear collective modes
that are easily accessible via a low energetic cost [8, 18, 19].
For this reason, the ratio of interaction to kinetic energy, as
given by the appropriate dimensionless interaction parameter,
is large at the transition: rs ' 31 for quantum electrons in
d = 2 [20]. Strong interaction effects then naturally persist
into the metallic state beyond melting, causing short-range
spatial correlations that are reminiscent of those in the ordered
phase [21], and a consequently large correlation energy.

Analogously, for quantum lattice electrons as considered
here, long-range interactions favor charge fluctuations,
destabilizing the Wigner crystal (stripe) order and uncovering
the correlated metallic state that lies underneath. To assess
this effect, we again resort to the t/V → 0 limit and evaluate
the energy required to create a defect of the ordered pattern,
Ed [17], which is obtained by displacing a carrier from its
equilibrium position on the stripe to a neighboring unoccupied
site on the lattice. While this energy cost is exactly Ed =

V in the nearest neighbor limit (α → ∞), it is steadily
suppressed upon increasing the range of the interactions. As
a result, defects are more and more easily created by quantum
fluctuations when t > 0. The quantum melting transition
occurs through proliferation of such defects when t ∼ Ed

[17, 22, 23]. From the asymptotic expression Ed ' 0.469Vα
we obtain (V/t)c ∝ 1/α for small α, as observed in Fig. 1
(black dashed line). For comparison we show the transition
predicted by the random phase approximation (gray dashed
line) [24]. This approximation captures the onset of local
charge order but it completely misses the fragility of long-
range order at small α, which arises from correlations beyond
mean-field level. Remarkably, the pure Coulomb case [α =

1, (V/t)c ' 29, corresponding to rs = 7.2] lies well on
the asymptotic “small α” side of the dome: in this regime
we have Ed � V , signifying that the local, short range
energy scale V and the global, long-range scale responsible
for collective behavior and melting are indeed well separated.
As we shall see, this separation of energy scales has profound
consequences on the electronic properties of the metal.

Pseudogap metal. Fig. 2a illustrates the evolution as a
function of V/t of the local single-particle spectral function
A(ω) in the metallic state. As the interaction strength
increases, a pseudogap opens at the Fermi energy (ω =

µ), which progressively deepens and broadens as excitations
move towards high energies, ω ∼ V . The density of states
at the Fermi energy, A(µ), falls approximately linearly with
V/t, then flattens deep in the pseudogap phase and eventually
vanishes at the MIT at (V/t)c ' 29 (Fig. 2c); the pseudogap
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FIG. 2: Pseudogap metal. a, Spectral function A(ω) at α = 1 and Ns = 18 and averaged over 16 TBC, illustrating the pseudogap phenomenon.
All spectra are smoothened by a Gaussian broadening δ = 0.7t. b, Distribution of classical local potentials P(φ) (broadening δ = 0.05V),
showing the opening of the Coulomb gap; the dashed line is P ∼ e−V/ξ|φ| with ξ = 2; the values of V/t and the color code are the same as in
(a). c, Drude weight D (averaged over 121 TBC) normalized by the exact non-interacting value D0 = 0.247, quasiparticle weight Z (angular-
averaged over the Fermi surface) and DOS A(µ) at the Fermi energy, divided by the non-interacting value. The inset shows P(0), tracking the
plasma dip. The dashed line is P(0) ∼ |V − Vc|

2.

coalesces into a hard gap in the stripe phase beyond this
value. Fig. S17shows analogous results obtained on the
square lattice, demonstrating that the source of frustration
responsible for the pseudogap formation originates from the
long-range interactions, and not the lattice geometry.

Concomitant with the development of the pseudogap in
the one-particle spectrum, electronic correlations build up,
signalled by a steady decrease of both the Drude weight,
D, and the quasiparticle weight, Z, with the latter following
closely the behavior of A(µ) (Fig. 2c). At the MIT both D
and Z vanish, indicating the divergence of the quasiparticle
mass, m∗/mb ∝ 1/Z, and of the optical effective mass,
m∗opt/mb = D0/D [9]. Strikingly, the mechanism for
mass divergence at work here is radically different from the
spin-related mechanism involved in the bandwidth-controlled
Mott-Hubbard transition. In the case of the Mott-Hubbard
MIT, the spectral function features a quasiparticle peak that
remains pinned at the Fermi energy, and whose shrinking with
Z mostly causes the divergence of the effective mass [1, 2].
Here no peak narrowing is found, and it is instead the value of
the renormalized density of states (DOS) at the Fermi energy,
A(µ), that falls continuously to 0 controlling the quasiparticle
renormalization (Fig. 2c).

Self-generated randomness and short range correlations.
The pseudogap phenomenon revealed in the preceding
paragraphs is strongly reminiscent of the soft Coulomb
gap characteristic of disordered insulators. There, stability
arguments imply that the DOS of an interacting electron
system in the presence of quenched disorder must vanish
at the Fermi energy [25], due to their long-range mutual
interactions. Similar physics was also reported in clean
classical Coulomb liquids, where it was shown that the long-
distance potentials from electrons beyond the correlation
length, when taken collectively, act as a source of (self-
generated) randomness [8, 16, 26–28]. The observations

presented in Fig. 2 highlight that the phenomenon of self-
generated randomness and the associated Coulomb pseudogap
exist also in the clean quantum case, as hypothesized by Efros
almost three decades ago [26]. The resemblance between
the quantum phase diagram Fig. 1 and its classical analogue
determined in Ref. [8] is striking.

To track the origin of the pseudogap, we determine the
distribution of electrostatic site energies in the quantum
ground state |ψ〉, which can be evaluated as P(φi) = 〈ψ|δ[φi −∑

j,i V(Ri j)(n̂ j − n)]|ψ〉 (the site index can be ignored as this
quantity is translationally invariant in the present case). For
classical electrons, P(φ) would reduce to the density of states
studied in the Efros-Shklovskii soft gap problem [25]. In the
quantum case, it represents the fluctuating background where
the electron motion takes place.

Fig. 2b shows that, prior to the pseudogap opening
observed in the full electronic spectrum, a broad dip develops
already in the distribution of site potentials. Interestingly,
its shape at the transition is compatible with that caused by
short-range charge correlations in self-generated Coulomb
glasses, P ∼ e−V/ξ|φ| (dashed line) [28]. There, the correlation
hole that forms around electrons in order to minimize
their mutual interactions was shown to deplete the classical
DOS below the Efros-Shklovskii (ES) bound, PES ∼ |φ|
(PES ∼ |φ|

d/α−1 in the general case in d dimensions and
exponent α). Such correlation hole, or “electronic polaron”,
is a common feature of electron liquids with unscreened
Coulomb interactions [21]. Its buildup within the pseudogap
phase is confirmed here by direct evaluation of the charge
correlation function [9]. We have verified that our method
fully recovers the prediction PES ∼ |φ| upon suppressing
short-range correlations via the introduction of extrinsic
(quenched) disorder, and that the pseudogap disappears for
short range interactions α > D, demonstrating that the
observed pseudogap is the consequence of the long-range
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FIG. 3: Soft collective excitations in the pseudogap phase. a
Spectral function D(ω) of the charge fluctuations, averaged over the
Brillouin zone (Gaussian broadening δ = 0.2t). The inset shows the
same quantity evaluated at the stripe-ordering wavevector q = M;
this critical mode is also visible as a shoulder in the main panel
(circles). b Frequency of the boson peak, controlling the timescale
of the charge fluctuations.

Coloumb interaction.
Soft collective excitations. The results presented above

demonstrate strongly correlated behavior arising from long-
range charge-charge interactions, which is unrelated to the
paradigmatic Mott mechanism. Our findings indicate that
in systems with unscreened, long-range interactions, the
collective charge fluctuations are able to provide a self-
generated random environment, thereby enabling precursors
of the Efros-Shklovskii Coulomb gap phenomenon. This
fluctuating environment is polarizable and responds to
the motion of the individual electrons, being ultimately
responsible for the mass enhancement via the formation of
electronic polarons.

The existence of a Coulomb pseudogap necessarily implies
that there is a marked separation of timescales between
the (fast) motion of individual electrons and the (much
slower) global rearrangements of the charge at long distances:
the idea being that the charge fluctuation background is
almost frozen, being collectively jammed by the mutual
interactions among its constituents [8, 18, 19, 27, 29]. We
can actually provide quantitative support to this statement,
by evaluating the spectrum of charge fluctuations, D(ω) =∑

m |〈m| ρ̂q|ψ〉|
2δ[ω − (Em − E0)], where ρ̂q is the Fourier

transform of the charge density n̂i, and m and Em are all the
eigenstates and eigenenergies. Fig. 3a shows that there is
a strong contribution to the spectrum that is soft throughout
the pseudogap phase, peaking at ωcoll ' 0.2 − 0.25t (see also
Fig. 3b). This is about 30 − 50 times lower than the free-
electron bandwidth, 9t. This collective contribution is mostly
unrelated to the critical mode responsible for stripe ordering
(wavevector q ≡ M, which instead softens only at the MIT, see
inset and Fig. 3b). It arises instead from a diffuse region near

the edges of the Brillouin zone [16], indicative of the existence
of many competing orders being frustrated by the long-range
interactions [16, 27]. Translated to real space, these zone-
boundary features correspond to the local (short-distance)
dipoles postulated in Ref. [29], arising from frustrated charge
correlations. The fact that within the pseudogap phase the
metallic character measured by the Drude weight, D/D0, is
larger than that implied by the one-particle residue Z alone, as
observed in Fig. 2c, suggests that such collective modes could
be actively contributing to charge transport as an additional
conduction channel [17, 30].

Concluding remarks. The existence of self-generated
randomness with a suppressed energy scale implies an equally
suppressed temperature scale at which quantum coherence is
lost. The collapse onto classical behavior should be further
enhanced by the fact that the random potentials possess a
continuous spectrum (Fig. 2b), thus providing a natural source
of electron decoherence [31]. This could explain, for example,
the puzzling behavior observed in the quarter-filled organic
compounds θ-(BEDT-TTF)2X. In these materials, the electron
liquid shows precursors of glassiness despite the absence
of structural disorder [32, 33], that are surprisingly well-
captured by classical models [16]. Moreover, in agreement
with the results found here, these materials display frustrated
metastable orders (seen as diffuse spots in X-ray diffraction
images) that compete with the stripes [32]. Above an
extremely low Fermi temperature, T ∗FL ∼ 20K, which is two
orders of magnitude lower than predicted by band-structure
arguments, the resistivity displays strange metal behavior
with an approximately linear temperature dependence [34, 35]
compatible with strong scattering by low-energy bosonic
modes. The system also features a displaced Drude peak
in the optical conductivity, suggestive of disorder-induced
localization, indicating that self-generated randomness could
also be playing a key role in the charge transport mechanism
[36, 37].

Due to the general nature of the effects revealed here,
it will be interesting to investigate their relevance in other
quantum materials exhibiting bad metallic behavior [3,
6], including those near integer fillings where long-range
interactions are customarily neglected. In these systems,
the reduced screening ability of electrons at the onset of
the Mott transition should imply that long-range potentials
play a significant role [7, 27, 29], therefore contributing
to their anomalous thermodynamic and transport properties:
the importance of long-range interactions and the ensuing
nearly-classical behavior of charge fluctuations could bring
the T -linear behavior of the resistivity, which characterizes
correlated electrons at very high temperatures [38], down
to the experimentally relevant temperature range. Generally
speaking, the interplay of Wigner and Mott physics should
provide a promising new direction in research on strongly
correlated materials.
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Supplementary Information

Exact diagonalization

All observables reported in this paper, unless explicitly
noted otherwise, were computed via zero-temperature
exact diagonalization calculations on an isotropic triangular
lattice. When the Hilbert space of the system was
sufficiently small, the Hamiltonian was diagonalized via
brute force exact diagonalization. Otherwise, the Lanczos
algorithm, complete with Gram-Schmidt orthogonalization,
was employed. Calculations were performed on clusters of
size Ns = 12, 18 and 24 sites. The hopping and interaction
terms along the different bond directions (shown in Fig. S1a)
were taken to be isotropic (ie, tc = tp = t and Vc = Vp =

V). The cluster geometries, shown in Fig. S1a, were chosen
such that the clusters were compatible with both stripe (M
point) and three-fold (K point) charge order except for the
rectangular prescription for the 24 site system, which misses
the K point. The translation vectors, T1 and T2, for each
cluster are given as follows:

• Ns =12: T1 = (L, L), T2 = (−L, 2L) with L = 2

• Ns =18: T1 = (L, 0), T2 = (0, L/2) with L = 6

• Ns =24: T1 = (L, 0), T2 = (0, 2L/3) with L = 6

• Ns =24: T1 = (L, L), T2 = (−L, L/2) with L = 4.

We applied translation symmetries in a standard manner
where necessary to reduce the computational cost and to
minimize any spurious effects of degenerate ground states [1].
The use of these symmetries reduces the size of the Hilbert
space in a given symmetry sector by a factor approximately
equal to the number of sites,H → H/Ns.

Twisted boundary conditions

We employed twisted boundary conditions (TBCs) to
improve discretization errors inherent in the kinetic portion of
the Hamiltonian and to lift the degeneracy of the ground state.
As described in Ref. [2], TBCs correspond to the insertion of
a flux along the directions of the lattice torus which thereby
modifies the hopping term of the Hamiltonian,

HTBC
K

= −t
∑
〈i j〉

eiri j·κc†i c j + h.c., (S1)

where ri j is the vector connecting two lattice sites and

κ = 2π
(
ϕx

Lx
x̂ +

ϕy

Ly
ŷ
)
. (S2)

We can define the phase acquired along a given direction by
an angle θi that is written in terms of a vector potential,

θi = 2πξi =
2π
ϕ0

∮ (
A1~α1 + A2~α2

)
· d~l, (S3)

where ~αi corresponds to the unit lattice translation vector
along the i-th direction of the torus. The prefactor, 2π/ϕ0
corresponds to a constant factor 2πq/hc, where we set ϕ0 =

hc/q = 1.
Under periodic boundary conditions (PBCs, ξ1 = ξ2 = 0),

the system suffers from ground state degeneracy issues which
is well-known to lead to instabilities when treated via Lanczos
diagonalization. Therefore, we introduced a small shift ~ξ =

(1.07654 × 10−4,−1.98673 × 10−4) to lift the degeneracy
in the vicinity of the PBCs (and other highly degenerate
boundary condition points) such that diagonalization via the
Lanczos algorithm could be employed. TBCs not only remedy
issues caused by degeneracy in the system, but also allow
us to compute observables more accurately over a grid of
flux points, thereby ensuring that our results approach the
thermodynamic limit [2, 3].

Ewald summation

For the interacting portion of the Hamiltonian [Eq. (1)
of the main text], the Ewald summation was utilized to
accurately implement a long-ranged potential on a discrete
lattice of the form,

V(ri j) =
∑

n

1
|ri j + n|α

, (S4)

where n = n1T1 + n2T2 with ni ∈ N. As in Ref. [4], we make
use of the integral representation of such a potential,

1
|r|α

=
1

Γ(α/2)

( ∫ ε

0
dt t

α
2 −1e−r2t +

∫ ∞

ε

dt t
α
2 −1e−r2t

)
, (S5)

to obtain an expression of the form

V(r) =
πd/2c(α−d)/2

vol
1

Γ(α/2)

∑
k

[(
cos(k · r) − 1

)
× φ d−α

2 −1

(
|k|2

4c

)]
+

cα/2

Γ(α/2)

∑
n

[
φ α

2 −1

(
c|r + n|2

)
− φ α

2 −1

(
c|r|2

)]
+

cα/2

Γ(α/2)
2
α
−

1
|r|α

, (S6)

where

φp(a) =

0 if a = 0∫ ∞
1 dt tpe−at if a , 0.

This general expression is valid in any dimension d and for
any range of interaction, α. Each of the summation terms in
this expression converges rapidly in reciprocal and real space,
respectively. All calculations were performed at convergence
of the potential.
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Ns = 24

Ns = 24
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(a)

Γ

M

K

(b)

FIG. S1: (a) Sketch of cluster definitions for Ns = 12, 18 and 24 sites. (b) Brillouin zone corresponding to the triangular lattice. The dotted
lines are the paths along which the occupation number 〈n̂k〉 is calculated for the determination of the quasiparticle renormalization Z.

Finite size convergence

Drude weight

The Drude weight is calculated as in Ref. [5] as

Dµ

2πe2 =
1

2N
〈0, ϕ|Fµµ|0, ϕ〉 +

1
N

∑
n,0

∣∣∣ 〈n, ϕ|Jµ|0, ϕ〉∣∣∣2
E0(ϕ) − En(ϕ)

(S7)

where

Jµ =
∂H
∂ϕµ

and Fµν =
∂2H

∂ϕµ∂ϕν
(S8)

and µ, ν represent directions along the lattice. The notations
|0, ϕ〉 and |n, ϕ〉 indicate the ground state and the n-th excited
state, respectively, for a given flux, ϕ = (ϕx, ϕy). The
Drude weight reported in the text has been calculated in the
direction c of the rotationally symmetric Ns = 12 lattice (see
Fig. S1a), and upon averaging over the directions θ = 0, π/6
and π/3 for the Ns = 18 lattice (θ being the angle with
respect to c). As shown in Figs. S2 and S3, the Drude
weight (given as a fraction of the non-interacting value, D/D0)
agrees remarkably well for the Ns = 12 and 18 site clusters,
suggesting that our calculations are well converged to the
thermodynamic limit. For each of the 697 points in (α, t/V)
used to construct the colormap reported in Fig. S3 and in Fig.
1 of the main text, we averaged D/D0 over a 20 x 20 grid of
flux points for the Ns = 12 site system.

The values of D/D0 reported in Figs. 1 and 2 of the main
text for Ns = 18 were calculated via Lanczos diagonalization
with the use of translation symmetries to determine the ground
state symmetry sector. An 11 x 11 grid of flux points was
used, with small shifts introduced (as discussed previously) to
minimize degeneracy effects. Despite the use of symmetries
and shifted flux points, some spurious degeneracy effects were
observed that led to the removal of a subset of points from
the average. This removal was conducted by implementing
a cutoff and discarding unphysical values below the cutoff

Ns=12
Ns=18

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

V/t

D
/D
0

FIG. S2: The Drude weight, given as a fraction of the non-interacting
value, for the Ns = 12 and 18 site systems with unscreened Coulomb
interactions V(R) ∝ 1/Rα (α = 1). Both clusters display a transition
from a metallic to insulating state at (V/t)c ≈ 29.

(D/D0 < −0.05). For any given α and V/t, at most 30 points
were discarded which still yields an accurate averaging over
91 flux points.

Spectral function

The spectral function, reported from calculations on the
Ns = 18 site system, was calculated as

A(ω) = −
1
π

Im
∑

i

∑
n,0

|
〈
ΨN+1

n

∣∣∣c†i ∣∣∣ΨN
0

〉
|2

ω − (EN+1
n − EN

0 ) + i0+

+
|
〈
ΨN−1

n

∣∣∣ci

∣∣∣ΨN
0

〉
|2

ω − (EN
0 − EN−1

n ) + i0+
, (S9)

where the summation over i indicates a sum over the discrete
lattice sites in real space, ri. The subscripts on the wave
functions indicate the ground or n-th excited state, while the
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FIG. S3: Phase diagram showing metal-insulator transition points
determined as the disappearance of the Drude weight (D/D0) on the
Ns = 12 and 18 site systems (gray and black points respectively).
Both systems possess similarly dome-shaped structures of the stripe-
ordered phase, showing that the agreement between different system
sizes is consistent over multiple ranges of interaction, α.

ED Ns=18

exact

-20 -10 0 10 20
0.00

0.05

0.10

0.15

0.20

ω-μ

A
(ω

)

FIG. S4: A comparison of the non-interacting spectral function on
the triangular lattice in the thermodynamic limit (red, dashed line)
and averaged over 121 twisted boundary conditions for a calculation
on the Ns = 18 site cluster (blue). The same Gaussian broadening
δ = 0.7t has been applied in both cases.

superscripts indicate the number of particles. For each value
of V/t, the single-particle spectral function was averaged over
a 4 x 4 grid of flux points and a Gaussian broadening was
applied. The spectral function was already well-converged for
the 4 x 4 grid of flux points and increasing the size of the mesh
to 11 x 11 did not qualitatively change the results.

Fig. S4 shows our ED result for the spectral function in the
non-interacting limit obtained on the 18-site triangular lattice
with an 11x11 grid of flux points (blue), recovering very
accurately the known spectral function in the thermodynamic
limit (red dashed).

Ns=24
Ns=18
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P
(0
)

FIG. S5: On-site potential distribution P(φ) calculated at φ = 0,
illustrating the progressive opening of the Coulomb gap. The results
for Ns =18 and 24 sites are in very good quantitative agreement.

On-site potential distribution

The distribution of on-site potentials, P(φi), defined as

P(φi) =

〈
ψ

∣∣∣∣∣∣∣∣δ
(
φi −

∑
j,i

V(Ri j)
(
n̂ j − 〈n̂〉

))∣∣∣∣∣∣∣∣ψ
〉
, (S10)

was computed on a 4 x 4 grid of flux points for the Ns = 18
and 24 site systems. Histograms were constructed from the
data on the flux grid with a width φ/V =0.002, and a Gaussian
broadening φ/V = 0.05 was applied to obtain smooth curves.
Fig. S5 illustrates the central value P(0) vs V/t, showing very
good agreement between Ns =18 and 24 sites.

Quasiparticle weight

The quasiparticle weight, Z, is calculated as the size of
the discontinuity of the occupation function, 〈nk〉. TBCs
allow us to compute 〈nk〉 along a finely discretized path in
momentum space. For each path, we determine 〈nk〉 at Γ and
apply a flux such that k would lie along the line in momentum
space dictated by the path. The results showed some degree
of anisotropy, stemming from an anisotropic quasiparticle
renormalization, and as a result, we present Z computed as an
angular average over five different paths, shown in Fig. S1b.

Buildup of short-range correlations

To study the behavior of short-range correlations, we
compute the charge correlation function in real space,

C(i, j) =
∑
i, j

〈ψ0|n̂in̂ j|ψ0〉 . (S11)

Fig. S6 reports the difference between C(i, j) on the second
shell of neighbors (next nearest neighbors) and the first
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shell (nearest neighbors). A progressive depletion of the
first shell and transfer to longer distances marks the buildup
of short-range correlations, corresponding to the formation
of a correlation hole around each charge carrier. The
effect steadily increases with V/t, paralleling the quasiparticle
renormalization observed in Fig. 2c of the main text, until it
is eventually interrupted by the establishment of long-range
stripe correlations at the metal-insulator transition.

Ns=12
Ns=18

0 10 20 30 40 50
0.00

0.05

0.10

0.15

V/t

C
2
-
C
1

FIG. S6: Difference of the charge-charge correlation function
C(i, j) computed on the second and on the first shell of neighbors,
illustrating the buildup of the correlation hole.

Analytical estimates of the transition lines in Fig.1.

Here we provide a description of the analytical estimates
for the transition lines obtained for small and large α, shown
in the dashed and dotted lines, respectively in Fig. 1.

At small α, melting of the stripe phase occurs through
proliferation of defects. The energy of a single defect, Ed,
can be evaluated by computing the increase in electrostatic
energy, as per Eq. (S4), upon moving a single particle
from an occupied to a neighboring empty site. The quantum
melting transition occurs when t ∼ Ed. From the asymptotic
expression Ed ' 0.469Vα we obtain (V/t)c ∝ 1/α for small α.
This behavior is well reproduced by the ED results, as shown
in Fig. 1 (black dashed line).

At large α, the stripes melt into a pinball liquid, which
possesses a marked short-range threefold ordering. In this
case the transition point can be estimated by comparing
directly the energies of the two phases for large α, to lowest
order in the kinetic term ∝ t. The Madelung energy of
the pinball liquid and that of the stripes are equal for short-
range interactions. However, as soon as α < ∞, the
Madelung energy of the pinball liquid becomes higher due
to contributions from the interactions between next nearest
neighbors and beyond. The difference in potential energy
between the pinball and stripe charge configurations behaves
asymptotically as ∆E ∝ V/(R2)α, with R2 =

√
3 the second

neighbor distance. The gain in kinetic energy due to quantum

fluctuations at finite t is proportional to t2/V in the stripe
phase, while it is larger in the pinball liquid, being linear in
t. Equating these two contributions leads to (V/t)c ∝ 3α/2,
represented as a dotted line in Fig. 1.

Pseudogap physics on the square lattice

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

ϕ/V

P
(ϕ
)

FIG. S7: The development of the pseudogap in the spectral function
on the square lattice for α = 1 as V/t is increased (gradient of blue to
red lines; the corresponding values of V/t are indicated in the figure
legend). The inset shows the value of A(ω) at ω = µ which steadily
decreases before a hard gap opens at V/t ≈ 8. The number of sites,
Ns = 18, is the same as in Fig. 2 of the main text. These results are
averaged over an 11 × 11 grid of flux points.

In order to demonstrate the generality of the behavior
discovered, we present here the results of the spectral
function on the square lattice. Although this lattice geometry
does not have any inherent frustration, we still observe the
development of a pseuodogap in the spectral function with
increasing V/t, shown in Fig. S7. The spectral function was
calculated as explained previously in Sec. . The translation
vectors for the Ns = 18 site cluster used are given as:

• Ns =18: T1 = (L, L), T2 = (−L, L) with L = 3.

We argue that long-range interactions are the source of
frustration responsible for driving the development of the
pseudogap in both the triangular and square lattices. The
collective behavior induced by these interactions involves
the coordination of many sites regardless of the local lattice
geometry. It is also interesting to note that Refs. [4, 6, 7]
have demonstrated frustration of charge order arising from
long-range interactions in otherwise non-frustrated lattices
(square, cubic) in the classical limit. In summary, the
development of strongly correlated behavior arising from
long-range interactions is a general phenomenon and does not
rely on the geometrical frustration of the lattice.
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